login
A266261
Decimal expansion of zeta'(-10) (the derivative of Riemann's zeta function at -10).
14
0, 1, 8, 9, 2, 9, 9, 2, 6, 3, 3, 8, 1, 4, 0, 3, 7, 4, 2, 2, 8, 9, 8, 0, 5, 0, 2, 2, 9, 0, 3, 4, 6, 7, 9, 5, 2, 3, 1, 9, 8, 5, 2, 5, 8, 0, 9, 5, 1, 6, 9, 5, 5, 5, 8, 1, 0, 4, 8, 6, 2, 3, 1, 1, 0, 0, 7, 0, 2, 7, 0, 5, 1, 5, 5, 0, 4, 1, 4, 8, 0, 5, 5, 2, 3, 5, 1, 6, 0, 7, 3
OFFSET
0,3
LINKS
FORMULA
zeta'(-10) = -14175*zeta(11)/(8*Pi^10) = log(A(10)).
Equals -(5/264)*(zeta(11)/zeta(10)).
EXAMPLE
-0.0189299263381403742289805022903467952319852580951695558
MATHEMATICA
Join[{0}, RealDigits[-(5/264)*(Zeta[11]/Zeta[10]), 10, 100] // First]
CROSSREFS
Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).
Sequence in context: A198142 A336056 A202623 * A117914 A203077 A339800
KEYWORD
nonn,cons
AUTHOR
G. C. Greubel, Dec 25 2015
STATUS
approved