The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259068 Decimal expansion of zeta'(-3) (the derivative of Riemann's zeta function at -3). 27
 0, 0, 5, 3, 7, 8, 5, 7, 6, 3, 5, 7, 7, 7, 4, 3, 0, 1, 1, 4, 4, 4, 1, 6, 9, 7, 4, 2, 1, 0, 4, 1, 3, 8, 4, 2, 8, 9, 5, 6, 6, 4, 4, 3, 9, 7, 4, 2, 2, 9, 5, 5, 0, 7, 0, 5, 9, 4, 4, 7, 0, 2, 3, 2, 2, 3, 3, 2, 4, 5, 0, 1, 9, 9, 7, 9, 2, 4, 0, 6, 9, 5, 8, 6, 0, 9, 5, 1, 0, 3, 8, 7, 0, 8, 2, 5, 6, 8, 3, 2, 6, 7, 1, 2, 2, 4, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15.1 Generalized Glaisher constants, p. 136-137. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Eric Weisstein's MathWorld, Riemann Zeta Function. Wikipedia, Riemann Zeta Function FORMULA zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant, that is the n-th generalized Glaisher constant. zeta'(-3) = -11/720 - log(A(3)), where A(3) is A243263. Equals -11/720 + (gamma + log(2*Pi))/120 - 3*Zeta'(4)/(4*Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 24 2015 EXAMPLE 0.0053785763577743011444169742104138428956644397422955070594470232233245... MATHEMATICA Join[{0, 0}, RealDigits[Zeta'[-3], 10, 105] // First] CROSSREFS Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)). Cf. A000335, A000391, A000417, A000428, A023872, A057527, A057528, A255050, A255052, A258350, A258351, A258352, A260404. Sequence in context: A021190 A186905 A109694 * A219336 A280235 A135765 Adjacent sequences:  A259065 A259066 A259067 * A259069 A259070 A259071 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Jun 18 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 07:28 EST 2020. Contains 332067 sequences. (Running on oeis4.)