login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264432
Third-order Bell numbers.
3
1, 1, 2, 6, 24, 119, 700, 4748, 36403, 310851, 2922606, 29977587, 332929492, 3978258079, 50872884285, 692985674373, 10015172966221, 153021613683924, 2464031776132958, 41698912656882644, 739771703127828419, 13727160292457369098, 265876635231121617716
OFFSET
0,3
LINKS
Peter Luschny, The Bell transform
MAPLE
b:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add(
binomial(n-1, j-1)*b(j-1, h-1)*b(n-j, h), j=1..n))
end:
a:= n-> b(n, 3):
seq(a(n), n=0..22); # Alois P. Heinz, Aug 21 2017
MATHEMATICA
b[n_, h_]:=b[n, h]=If[Min[n, h]==0, 1, Sum[Binomial[n - 1, j - 1] b[j - 1, h - 1] b[n - j, h] , {j, n}]]; Table[b[n, 3], {n, 0, 30}] (* Indranil Ghosh, Aug 21 2017, after Maple code *)
PROG
(Sage) # uses[bell_transform from A264428]
def A264432_list(dim):
uno = [1]*dim
bell_number = [sum(bell_transform(n, uno)) for n in range(dim)]
bell_number_2 = [sum(bell_transform(n, bell_number)) for n in range(dim)]
return [sum(bell_transform(n, bell_number_2)) for n in range(dim)]
print(A264432_list(23))
(PARI)
\\ For n>23 precision has to be adapted as needed!
A = exp('x + O('x^33) );
B = exp( intformal(A) );
C = exp( intformal(B) );
D = exp( intformal(C) );
Vec( serlaplace(D) )
(Python)
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, h): return 1 if min(n, h)==0 else sum(binomial(n - 1, j - 1)*b(j - 1, h - 1)*b(n - j, h) for j in range(1, n + 1))
def a(n): return b(n, 3)
print([a(n) for n in range(31)]) # Indranil Ghosh, Aug 21 2017, after Maple code
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 02 2015
STATUS
approved