login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265312
Square array read by ascending antidiagonals, Bell numbers iterated by the Bell transform.
4
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 5, 1, 1, 1, 2, 6, 15, 1, 1, 1, 2, 6, 23, 52, 1, 1, 1, 2, 6, 24, 106, 203, 1, 1, 1, 2, 6, 24, 119, 568, 877, 1, 1, 1, 2, 6, 24, 120, 700, 3459, 4140, 1, 1, 1, 2, 6, 24, 120, 719, 4748, 23544, 21147, 1, 1, 1, 2, 6, 24, 120, 720, 5013, 36403, 176850, 115975, 1
OFFSET
0,9
LINKS
EXAMPLE
[1, 1, 1, 1, 1, 1, 1, 1, 1, ...] A000012
[1, 1, 2, 5, 15, 52, 203, 877, 4140, ...] A000110
[1, 1, 2, 6, 23, 106, 568, 3459, 23544, ...] A187761
[1, 1, 2, 6, 24, 119, 700, 4748, 36403, ...] A264432
[1, 1, 2, 6, 24, 120, 719, 5013, 39812, ...]
[1, 1, 2, 6, 24, 120, 720, 5039, 40285, ...]
[... ...]
[1, 1, 2, 6, 24, 120, 720, 5040, 40320, ...] A000142 = main diagonal.
MAPLE
A:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add(
binomial(n-1, j-1)*A(j-1, h-1)*A(n-j, h), j=1..n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Aug 21 2017
MATHEMATICA
A[n_, h_]:=A[n, h]=If[Min[n, h]==0, 1, Sum[Binomial[n - 1, j - 1] A[j - 1, h - 1] A[n - j, h] , {j, n}]]; Table[A[n, d - n], {d, 0, 12}, {n, 0, d}]//Flatten (* Indranil Ghosh, Aug 21 2017, after maple code *)
PROG
(Sage) # uses[bell_transform from A264428]
def bell_number_matrix(ord, len):
b = [1]*len; L = [b]
for k in (1..ord-1):
b = [sum(bell_transform(n, b)) for n in range(len)]
L.append(b)
return matrix(ZZ, L)
print(bell_number_matrix(6, 9))
(Python)
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def A(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*A(j - 1, h - 1)*A(n - j, h) for j in range(1, n + 1)])
for d in range(13): print([A(n, d - n) for n in range(d + 1)]) # Indranil Ghosh, Aug 21 2017, after Maple code
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Dec 06 2015
STATUS
approved