login
A287641
Number A(n,k) of set partitions of [n] such that j is member of block b only if b = 1 or at least one of j-1, ..., j-k is member of a block >= b-1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
14
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 5, 1, 1, 1, 2, 5, 14, 1, 1, 1, 2, 5, 15, 42, 1, 1, 1, 2, 5, 15, 51, 132, 1, 1, 1, 2, 5, 15, 52, 191, 429, 1, 1, 1, 2, 5, 15, 52, 202, 773, 1430, 1, 1, 1, 2, 5, 15, 52, 203, 861, 3336, 4862, 1, 1, 1, 2, 5, 15, 52, 203, 876, 3970, 15207, 16796, 1
OFFSET
0,9
LINKS
FORMULA
A(n,k) = Sum_{j=0..k} A287640(n,j).
EXAMPLE
A(5,0) = 1: 12345.
A(5,1) = 42 = 52 - 10 = A000110(5) - 10 counts all set partitions of [5] except: 124|3|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 14|2|35, 14|2|3|5, 1|24|3|5, 134|2|5.
A(5,2) = 51 = 52 - 1 = A000110(5) - 1 counts all set partitions of [5] except: 134|2|5.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, 2, 2, ...
1, 5, 5, 5, 5, 5, 5, 5, ...
1, 14, 15, 15, 15, 15, 15, 15, ...
1, 42, 51, 52, 52, 52, 52, 52, ...
1, 132, 191, 202, 203, 203, 203, 203, ...
1, 429, 773, 861, 876, 877, 877, 877, ...
MAPLE
b:= proc(n, l) option remember; `if`(n=0, 1, add(b(n-1,
[seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1))
end:
A:= (n, k)-> `if`(k=0, 1, b(n, [0$k])):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[0, _] = 1; b[n_, l_List] := b[n, l] = Sum[b[n - 1, Append[ Table[ Max[ l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}];
A[n_, k_] := If[k == 0, 1, b[n, Table[0, k]]];
Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives A000110.
Sequence in context: A358273 A215894 A061545 * A265312 A241531 A362277
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 28 2017
STATUS
approved