This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265315 Triangle read by rows, the denominators of the Bell transform of B(n,1) where B(n,x) are the Bernoulli polynomials. 3
 1, 1, 1, 1, 2, 1, 1, 6, 2, 1, 1, 1, 12, 1, 1, 1, 30, 6, 12, 1, 1, 1, 1, 90, 8, 12, 2, 1, 1, 42, 20, 360, 8, 12, 2, 1, 1, 1, 315, 45, 720, 6, 6, 1, 1, 1, 30, 7, 3780, 20, 240, 2, 2, 1, 1, 1, 1, 350, 7, 756, 32, 240, 4, 2, 2, 1, 1, 66, 12, 6300, 1512, 6048, 96, 240, 4, 1, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS For the definition of the Bell transform see A264428 and the link given there. LINKS EXAMPLE 1, 1,  1, 1,  2,   1, 1,  6,   2,    1, 1,  1,  12,    1,   1, 1, 30,   6,   12,   1,   1, 1,  1,  90,    8,  12,   2,   1, 1, 42,  20,  360,   8,  12,   2, 1, 1,  1, 315,   45, 720,   6,   6, 1, 1, 1, 30,   7, 3780,  20, 240,   2, 2, 1, 1, 1,  1, 350,    7, 756,  32, 240, 4, 2, 2, 1. MAPLE A265315_triangle := proc(n) local B, C, k; B := BellMatrix(x -> bernoulli(x, 1), n);  # see A264428 for k from 1 to n do    C := LinearAlgebra:-Row(B, k):    print(seq(denom(C[j]), j=1..k)) od end: A265315_triangle(12); MATHEMATICA BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; B = BellMatrix[Function[x, BernoulliB[x, 1]], rows]; Table[B[[n, k]] // Denominator, {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 26 2018, from Maple *) CROSSREFS Cf. A265314 for the numerators, A265602 and A265603 for B(2n,1). Cf. A027642 (column 1). Sequence in context: A322128 A125731 A123361 * A179380 A107106 A178249 Adjacent sequences:  A265312 A265313 A265314 * A265316 A265317 A265318 KEYWORD nonn,tabl,frac AUTHOR Peter Luschny, Jan 22 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 21:46 EDT 2019. Contains 328315 sequences. (Running on oeis4.)