login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A264434 Triangle read by rows, inverse Bell transform of the third order Bell numbers, T(n,k) for n>=0 and 0<=k<=n. 0
1, 0, 1, 0, -1, 1, 0, 1, -3, 1, 0, -1, 7, -6, 1, 0, 1, -15, 25, -10, 1, 0, 0, 31, -90, 65, -15, 1, 0, -7, -56, 301, -350, 140, -21, 1, 0, 33, 35, -938, 1701, -1050, 266, -28, 1, 0, -102, 423, 2485, -7686, 6951, -2646, 462, -36, 1, 0, 240, -3219, -3450, 31885 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Table of n, a(n) for n=0..59.

EXAMPLE

[ 1]

[ 0,     1]

[ 0,    -1,     1]

[ 0,     1,    -3,     1]

[ 0,    -1,     7,    -6,      1]

[ 0,     1,   -15,    25,    -10,     1]

[ 0,     0,    31,   -90,     65,    -15,    1]

[ 0,    -7,   -56,   301,   -350,    140,   -21,  1]

[ 0,    33,    35,  -938,   1701,  -1050,   266, -28,  1]

[ 0,  -102,   423,  2485,  -7686,   6951, -2646, 462, -36, 1]

PROG

(Sage)

# The function bell_transform is defined in A264428.

# The function inverse_bell_transform is defined in A264429.

def A264434_matrix(dim):

    uno = [1]*dim

    bell_numbers = [sum(bell_transform(n, uno)) for n in range(dim)]

    bell_number_2 = [sum(bell_transform(n, bell_numbers)) for n in range(dim)]

    bell_number_3 = [sum(bell_transform(n, bell_number_2)) for n in range(dim)]

    return inverse_bell_transform(dim, bell_number_3)

A264434_matrix(10)

CROSSREFS

Cf. A048993, A264428, A264429, A264431.

Sequence in context: A054024 A144644 A151509 * A151511 A048993 A264431

Adjacent sequences:  A264431 A264432 A264433 * A264435 A264436 A264437

KEYWORD

sign,tabl

AUTHOR

Peter Luschny, Dec 02 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 00:12 EST 2018. Contains 317332 sequences. (Running on oeis4.)