login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A264429 Triangle read by rows, inverse Bell transform of Bell numbers. 9
1, 0, 1, 0, -1, 1, 0, 1, -3, 1, 0, 0, 7, -6, 1, 0, -5, -10, 25, -10, 1, 0, 18, -20, -75, 65, -15, 1, 0, -7, 231, 70, -315, 140, -21, 1, 0, -338, -840, 1064, 945, -980, 266, -28, 1, 0, 2215, -1278, -8918, 1512, 4935, -2520, 462, -36, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Table of n, a(n) for n=0..54.

Peter Luschny, The Bell transform

EXAMPLE

[ 1 ]

[ 0,     1 ]

[ 0,    -1,     1 ]

[ 0,     1,    -3,     1 ]

[ 0,     0,     7,    -6,     1 ]

[ 0,    -5,   -10,    25,   -10,     1 ]

[ 0,    18,   -20,   -75,    65,   -15,     1 ]

[ 0,    -7,   231,    70,  -315,   140,   -21,     1 ]

[ 0,  -338,  -840,  1064,   945,  -980,   266,   -28,     1 ]

[ 0,  2215, -1278, -8918,  1512,  4935, -2520,   462,   -36,   1 ]

MATHEMATICA

rows = 10;

M = Table[BellY[n, k, BellB[Range[0, rows-1]]], {n, 0, rows-1}, {k, 0, rows-1}] // Inverse;

A264429 = Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Jun 22 2018 *)

PROG

(Sage)

# The function bell_transform is defined in A264428.

def inverse_bell_transform(dim, L):

    M = matrix(ZZ, dim)

    for n in range(dim):

        row = bell_transform(n, L)

        for k in (0..n): M[n, k] = row[k]

    return M.inverse()

def A264429_matrix(dim):

    uno = [1]*dim

    bell_numbers = [sum(bell_transform(n, uno)) for n in range(dim)]

    return inverse_bell_transform(dim, bell_numbers)

A264429_matrix(10)

CROSSREFS

Cf. A000110, A264428.

Sequence in context: A091925 A034370 A144402 * A324163 A127537 A265314

Adjacent sequences:  A264426 A264427 A264428 * A264430 A264431 A264432

KEYWORD

sign,tabl

AUTHOR

Peter Luschny, Nov 13 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 10:27 EST 2020. Contains 332209 sequences. (Running on oeis4.)