login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244050 Partial sums of A243980. 72
4, 20, 52, 112, 196, 328, 492, 716, 992, 1340, 1736, 2244, 2808, 3468, 4224, 5104, 6056, 7164, 8352, 9708, 11192, 12820, 14544, 16508, 18596, 20852, 23268, 25908, 28668, 31716, 34892, 38320, 41940, 45776, 49804, 54196, 58740, 63524, 68532, 73900 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) is also the volume of a special step pyramid with n levels related to the symmetric representation of sigma. Note that starting at the top of the pyramid, the total area of the horizontal regions at the n-th level is equal to A239050(n), and the total area of the vertical regions at the n-th level is equal to 8*n.

From Omar E. Pol, Sep 19 2015: (Start)

Also, consider that the area of the central square in the top of the pyramid is equal to 1, so the total area of the horizontal regions at the n-th level starting from the top is equal to sigma(n) = A000203(n), and the total area of the vertical regions at the n-th level is equal to 2*n.

Also note that this step pyramid can be constructed with four copies of the step pyramid described in A245092 (one copy in every quadrant). (End)

LINKS

Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 7342 terms from Robert Price)

FORMULA

a(n) = 4*A175254(n).

EXAMPLE

From Omar E. Pol, Aug 29 2015: (Start)

Illustration of the top view of the pyramid with 16 levels. The pyramid is formed of 5104 unit cubes:

.                 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

.                |  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |

.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |

.             _ _| |  _ _ _ _ _ _ _ _ _ _ _ _ _ _  | |_ _

.           _|  _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _  |_

.         _|  _|  _| |  _ _ _ _ _ _ _ _ _ _ _ _  | |_  |_  |_

.        |  _|   |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _|   |_  |

.   _ _ _| |  _ _|     |  _ _ _ _ _ _ _ _ _ _  |     |_ _  | |_ _ _

.  |  _ _ _|_| |      _| |_ _ _ _ _ _ _ _ _ _| |_      | |_|_ _ _  |

.  | | |  _ _ _|    _|_ _|  _ _ _ _ _ _ _ _  |_ _|_    |_ _ _  | | |

.  | | | | |  _ _ _| |  _| |_ _ _ _ _ _ _ _| |_  | |_ _ _  | | | | |

.  | | | | | | |  _ _|_|  _|  _ _ _ _ _ _  |_  |_|_ _  | | | | | | |

.  | | | | | | | | |  _ _|   |_ _ _ _ _ _|   |_ _  | | | | | | | | |

.  | | | | | | | | | | |  _ _|  _ _ _ _  |_ _  | | | | | | | | | | |

.  | | | | | | | | | | | | |  _|_ _ _ _|_  | | | | | | | | | | | | |

.  | | | | | | | | | | | | | | |  _ _  | | | | | | | | | | | | | | |

.  | | | | | | | | | | | | | | | |   | | | | | | | | | | | | | | | |

.  | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |

.  | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |

.  | | | | | | | | | | | |_|_  |_ _ _ _|  _|_| | | | | | | | | | | |

.  | | | | | | | | | |_|_    |_ _ _ _ _ _|    _|_| | | | | | | | | |

.  | | | | | | | |_|_ _  |_  |_ _ _ _ _ _|  _|  _ _|_| | | | | | | |

.  | | | | | |_|_ _  | |_  |_ _ _ _ _ _ _ _|  _| |  _ _|_| | | | | |

.  | | | |_|_ _    |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_|    _ _|_| | | |

.  | |_|_ _ _  |     |_  |_ _ _ _ _ _ _ _ _ _|  _|     |  _ _ _|_| |

.  |_ _ _  | |_|_      | |_ _ _ _ _ _ _ _ _ _| |      _|_| |  _ _ _|

.        | |_    |_ _  |_ _ _ _ _ _ _ _ _ _ _ _|  _ _|    _| |

.        |_  |_  |_  | |_ _ _ _ _ _ _ _ _ _ _ _| |  _|  _|  _|

.          |_  |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|  _|

.            |_ _  | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |  _ _|

.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |

.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |

.                |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|

.

Note that the above diagram contains a hidden pattern, simpler, which emerges from the front view of every corner of the step pyramid.

For more information about the hidden pattern see A237593 and A245092.

(End)

MATHEMATICA

a[n_] := 4 Sum[(n - k + 1) DivisorSigma[1, k], {k, n}]; Array[a, 40] (* Robert G. Wilson v, Aug 06 2018 *)

PROG

(PARI) a(n) = 4*sum(k=1, n, sigma(k)*(n-k+1)); \\ Michel Marcus, Aug 07 2018

(MAGMA) [4*(&+[(n-k+1)*DivisorSigma(1, k): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Apr 07 2019

(Sage) [4*sum(sigma(k)*(n-k+1) for k in (1..n)) for n in (1..40)] # G. C. Greubel, Apr 07 2019

CROSSREFS

Cf. A000203, A024916, A175254, A196020, A235791, A236104, A237048, A237270, A237271, A237591, A237593, A239050, A239660, A239931, A239932, A239933, A239934, A243980, A245092, A262626.

Sequence in context: A160799 A187274 A108099 * A250224 A250272 A023667

Adjacent sequences:  A244047 A244048 A244049 * A244051 A244052 A244053

KEYWORD

nonn

AUTHOR

Omar E. Pol, Jun 18 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 25 14:35 EDT 2019. Contains 326324 sequences. (Running on oeis4.)