login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A236104 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists k copies of the positive squares in nondecreasing order, and the first element of column k is in row k(k+1)/2. 147
1, 4, 9, 1, 16, 1, 25, 4, 36, 4, 1, 49, 9, 1, 64, 9, 1, 81, 16, 4, 100, 16, 4, 1, 121, 25, 4, 1, 144, 25, 9, 1, 169, 36, 9, 1, 196, 36, 9, 4, 225, 49, 16, 4, 1, 256, 49, 16, 4, 1, 289, 64, 16, 4, 1, 324, 64, 25, 9, 1, 361, 81, 25, 9, 1, 400, 81, 25, 9, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Gives an identity for the sum of all divisors of all positive integers <= n.

Alternating sum of row n equals A024916(n), i.e., sum_{k=1..A003056(n))} (-1)^(k-1)*T(n,k) = A024916(n).

Row n has length A003056(n) hence the first element of column k is in row A000217(k).

Columns 1-3 are A000290, A008794, A211547, but without the zeros.

Also column k lists the partial sums of the k-th column of triangle A196020 which gives an identity for sigma.

Since all the elements of this sequence are squares, we can draw an illustration of the alternating sum of row n step by step, and a symmetric diagram for A000203, A024916, A004125; see example.

For more information about the diagram see A237593.

LINKS

Table of n, a(n) for n=1..70.

FORMULA

T(n,k) = (A235791(n,k))^2.

EXAMPLE

Triangle begins:

1;

4;

9,     1;

16,    1;

25,    4;

36,    4,   1;

49,    9,   1;

64,    9,   1;

81,   16,   4;

100,  16,   4,   1;

121,  25,   4,   1;

144,  25,   9,   1;

169,  36,   9,   1;

196,  36,   9,   4;

225,  49,  16,   4,  1;

256,  49,  16,   4,  1;

289,  64,  16,   4,  1;

324,  64,  25,   9,  1;

361,  81,  25,   9,  1;

400,  81,  25,   9,  4;

441, 100,  36,   9,  4,  1;

484, 100,  36,  16,  4,  1;

529, 121,  36,  16,  4,  1;

576, 121,  49,  16,  4,  1;

...

For n = 6 the sum of all divisors of all positive integers <= 6 is [1] + [1+2] + [1+3] + [1+2+4] + [1+5] + [1+2+3+6] = 1 + 3 + 4 + 7 + 6 + 12 = 33. On the other hand the 6th row of triangle is 36, 4, 1, therefore the alternating row sum is 36 - 4 + 1 = 33, equaling the sum of all divisors of all positive integers <= 6.

Illustration of the alternating sum of the 6th row as the area of a polygon (or the number of cells), step by step, in the fourth quadrant:

.     _ _ _ _ _ _       _ _ _ _ _ _       _ _ _ _ _ _

.    |           |     |           |     |           |

.    |           |     |           |     |           |

.    |           |     |           |     |           |

.    |           |     |        _ _|     |          _|

.    |           |     |       |         |        _|

.    |_ _ _ _ _ _|     |_ _ _ _|         |_ _ _ _|

.

.          36           36 - 4 = 32     36 - 4 + 1 = 33

.

Then using this method we can draw a symmetric diagram for A000203, A024916, A004125, as shown below:

--------------------------------------------------

n     A000203  A024916            Diagram

--------------------------------------------------

.                         _ _ _ _ _ _ _ _ _ _ _ _

1        1        1      |_| | | | | | | | | | | |

2        3        4      |_ _|_| | | | | | | | | |

3        4        8      |_ _|  _|_| | | | | | | |

4        7       15      |_ _ _|    _|_| | | | | |

5        6       21      |_ _ _|  _|  _ _|_| | | |

6       12       33      |_ _ _ _|  _| |  _ _|_| |

7        8       41      |_ _ _ _| |_ _|_|    _ _|

8       15       56      |_ _ _ _ _|  _|     |* *

9       13       69      |_ _ _ _ _| |      _|* *

10      18       87      |_ _ _ _ _ _|  _ _|* * *

11      12       99      |_ _ _ _ _ _| |* * * * *

12      28      127      |_ _ _ _ _ _ _|* * * * *

.

The total number of cells in the first n set of symmetric regions of the diagram equals A024916(n). It appears that the total number of cells in the n-th set of symmetric regions of the diagram equals sigma(n) = A000203(n). Example: for n = 12 the 12th row of triangle is 144, 25, 9, 1, hence the alternating sums is 144 - 25 + 9 - 1 = 127. On the other hand we have that A000290(12) - A004125(12) = 144 - 17 = A024916(12) = 127, equaling the total number of cells in the diagram after 12 stages. The number of cells in the 12th set of symmetric regions of the diagram is sigma(12) = A000203(12) = 28. Note that in this case there is only one region. Finally, the number of *'s is A004125(12) = 17.

PROG

(Python)

from sympy import sqrt

import math

def T(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2))

for n in xrange(1, 21): print [T(n, k)**2 for k in xrange(1, int(math.floor((sqrt(8*n + 1) - 1)/2)) + 1)] # Indranil Ghosh, Apr 25 2017

CROSSREFS

Cf. A000203, A000217, A000290, A003056, A008794, A024916, A004125, A196020, A211343, A228813, A231345, A231347, A235791, A235794, A235799, A236106, A236112, A236540, A237270, A237591, A237593, A239660.

Sequence in context: A200393 A070438 A070638 * A152205 A129861 A055491

Adjacent sequences:  A236101 A236102 A236103 * A236105 A236106 A236107

KEYWORD

nonn,tabf

AUTHOR

Omar E. Pol, Jan 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 13 14:58 EST 2017. Contains 295958 sequences.