login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A239660 Triangle read by rows in which row n lists two copies of the n-th row of triangle A237593. 54
1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 3, 1, 1, 3, 3, 1, 1, 3, 3, 2, 2, 3, 3, 2, 2, 3, 4, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 4, 4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 4, 5, 2, 1, 1, 2, 5, 5, 2, 1, 1, 2, 5, 5, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 5, 6, 2, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 2, 6, 6, 3, 1, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 1, 3, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

For the construction of this sequence also we can start from A235791.

This sequence can be interpreted as an infinite Dyck path: UDUDUUDD...

Also we use this sequence for the construction of a spiral in which the arms in the quadrants give the symmetric representation of sigma, see example.

We can find the spiral (mentioned above) on the terraces of the step pyramid described in A244050. - Omar E. Pol, Dec 07 2016

The spiral has the property that the sum of the parts in the quadrants 1 and 3, divided by the sum of the parts in the quadrants 2 and 4, converges to 3/5. - Omar E. Pol, Jun 10 2019

LINKS

Robert Price, Table of n, a(n) for n = 1..30016 (rows n = 1..412, flattened)

EXAMPLE

Triangle begins (first 15.5 rows):

1, 1, 1, 1;

2, 2, 2, 2;

2, 1, 1, 2, 2, 1, 1, 2;

3, 1, 1, 3, 3, 1, 1, 3;

3, 2, 2, 3, 3, 2, 2, 3;

4, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 4;

4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 4;

5, 2, 1, 1, 2, 5, 5, 2, 1, 1, 2, 5;

5, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 5;

6, 2, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 2, 6;

6, 3, 1, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 1, 3, 6;

7, 2, 2, 1, 1, 2, 2, 7, 7, 2, 2, 1, 1, 2, 2, 7;

7, 3, 2, 1, 1, 2, 3, 7, 7, 3, 2, 1, 1, 2, 3, 7;

8, 3, 1, 2, 2, 1, 3, 8, 8, 3, 1, 2, 2, 1, 3, 8;

8, 3, 2, 1, 1, 1, 1, 2, 3, 8, 8, 3, 2, 1, 1, 1, 1, 2, 3, 8;

9, 3, 2, 1, 1, 1, 1, 2, 3, 9, ...

.

Illustration of initial terms as an infinite Dyck path (row n = 1..4):

.

.                            /\/\    /\/\

.       /\  /\  /\/\  /\/\  /    \  /    \

.  /\/\/  \/  \/    \/    \/      \/      \

.

.

Illustration of initial terms for the construction of a spiral related to sigma:

.

.  row 1     row 2          row 3           row 4

.                                          _ _ _

.                                               |_

.             _ _                                 |

.   _ _      |                                    |

.  |   |     |                                    |

.            |         |           |              |

.            |_ _      |_         _|              |

.                        |_ _ _ _|               _|

.                                          _ _ _|

.

.[1,1,1,1] [2,2,2,2] [2,1,1,2,2,1,1,2] [3,1,1,3,3,1,1,3]

.

The first 2*A003056(n) terms of the n-th row are represented in the A010883(n-1) quadrant and the last 2*A003056(n) terms of the n-th row are represented in the A010883(n) quadrant.

.

Illustration of the spiral constructed with the first 15.5 rows of triangle:

.

.               12 _ _ _ _ _ _ _ _

.                 |  _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7

.                 | |             |_ _ _ _ _ _ _|

.                _| |                           |

.               |_ _|9 _ _ _ _ _ _              |_ _

.         12 _ _|     |  _ _ _ _ _|_ _ _ _ _ 5      |_

.      _ _ _| |      _| |         |_ _ _ _ _|         |

.     |  _ _ _|  9 _|_ _|                   |_ _ 3    |_ _ _ 7

.     | |      _ _| |   12 _ _ _ _          |_  |         | |

.     | |     |  _ _|    _|  _ _ _|_ _ _ 3    |_|_ _ 5    | |

.     | |     | |      _|   |     |_ _ _|         | |     | |

.     | |     | |     |  _ _|           |_ _ 3    | |     | |

.     | |     | |     | |    3 _ _        | |     | |     | |

.     | |     | |     | |     |  _|_ 1    | |     | |     | |

.    _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _

.   | |     | |     | |     | |         | |     | |     | |     | |

.   | |     | |     | |     |_|_ _     _| |     | |     | |     | |

.   | |     | |     | |    2  |_ _|_ _|  _|     | |     | |     | |

.   | |     | |     |_|_     2    |_ _ _|    _ _| |     | |     | |

.   | |     | |    4    |_               7 _|  _ _|     | |     | |

.   | |     |_|_ _        |_ _ _ _        |  _|    _ _ _| |     | |

.   | |    6      |_      |_ _ _ _|_ _ _ _| |    _|    _ _|     | |

.   |_|_ _ _        |_   4        |_ _ _ _ _|  _|     |    _ _ _| |

.  8      | |_ _      |                     15|      _|   |  _ _ _|

.         |_    |     |_ _ _ _ _ _            |  _ _|    _| |

.        8  |_  |_    |_ _ _ _ _ _|_ _ _ _ _ _| |      _|  _|

.             |_ _|  6            |_ _ _ _ _ _ _|  _ _|  _|

.                 |                             28|  _ _|

.                 |_ _ _ _ _ _ _ _                | |

.                 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |

.                8                |_ _ _ _ _ _ _ _ _|

.                                                    31

.

The diagram contains A237590(16) = 27 parts.

The total area (also the total number of cells) in the n-th arm of the spiral is equal to sigma(n) = A000203(n), considering every quadrant and the axes x and y. (cheked by hand up to row n = 128). The parts of the spiral are in A237270: 1, 3, 2, 2, 7...

Diagram extend by Omar E. Pol, Aug 23 2018

CROSSREFS

Row n has length 4*A003056(n).

The sum of row n is equal to 4*n = A008586(n).

Row n is a palindromic composition of 4*n = A008586(n).

Both column 1 and right border are A008619, n >= 1.

The connection between A196020 and A237270 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> this sequence --> A237270.

Cf. A000203, A000217, A003056, A008619, A010883, A112610, A193553, A237048, A237271, A237590, A239052, A239053, A239663, A239665, A239931, A239932, A239933, A239934, A240020, A240062, A244050, A245092, A262626, A296508, A299778.

Sequence in context: A087472 A172069 A054348 * A237348 A037813 A159700

Adjacent sequences:  A239657 A239658 A239659 * A239661 A239662 A239663

KEYWORD

nonn,look,tabf

AUTHOR

Omar E. Pol, Mar 24 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 15 16:31 EDT 2019. Contains 327078 sequences. (Running on oeis4.)