login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213045
Number of (w,x,y) with all terms in {0,...,n} and 2*|w-x| > max(w,x,y) - min(w,x,y).
2
0, 4, 14, 36, 72, 128, 206, 312, 448, 620, 830, 1084, 1384, 1736, 2142, 2608, 3136, 3732, 4398, 5140, 5960, 6864, 7854, 8936, 10112, 11388, 12766, 14252, 15848, 17560, 19390, 21344, 23424, 25636, 27982, 30468, 33096, 35872, 38798, 41880
OFFSET
0,2
COMMENTS
Every term is even.
FORMULA
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
G.f.: 2*x*(2 + x + x^2)/((-1 + x)^4*(1 + x)).
a(n) = (n+1)^3 - A087035(n+1).
a(n) = 2*A212685(n+1) = (2*n*(4*n^2+9*n+8) - 3*(-1)^n + 3)/12. [Bruno Berselli, Jun 11 2012]
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Max[w, x, y] - Min[w, x, y] < 2 Abs[w - x], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 45]] (* this sequence *)
m/2 (* integers *)
LinearRecurrence[{3, -2, -2, 3, -1}, {0, 4, 14, 36, 72}, 50] (* Harvey P. Dale, Jul 31 2013 *)
CROSSREFS
See A212959 for a guide to related sequences.
Sequence in context: A295180 A305906 A177110 * A061989 A079908 A038164
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 10 2012
STATUS
approved