login
A213048
Number of preferential arrangements of n labeled elements with repetitions allowed.
1
1, 1, 5, 31, 229, 1981, 19775, 224589, 2864901, 40591255, 632760105, 10765616885, 198543617119, 3945765358653, 84070841065937, 1911864488674531, 46222718892288645, 1183919151676806177, 32025836905529003471, 912372909851608715945, 27304698509111141688969
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} C(n+k-1,k)*a(n-k) for n>0, a(0) = 1.
a(n) = Sum_c(n) C(n+k1-1,k1) C(n-k1+k2-1,k2) C(n-k1-k2+k3-1,k3) ..., where Sum_c(n) denotes the sum over all compositions (ordered partitions) of n = k1 + k2 + ... .
a(n) ~ c * n! * n^(log(2)) / (log(2))^n, where c = 0.9387523255426859866752735339706007723805611... . - Vaclav Kotesovec, May 03 2015
EXAMPLE
For n=2 the a(2) = 5 solutions are (1,2), (1|2), (2|1), (1|1), (2|2).
MAPLE
a:= proc(n) option remember;
`if`(n=0, 1, add(binomial(n+k-1, k)*a(n-k), k=1..n))
end:
seq(a(n), n=0..25);
MATHEMATICA
a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n+k-1, k] a[n-k], {k, 1, n}]];
a /@ Range[0, 25] (* Jean-François Alcover, Nov 21 2020 *)
CROSSREFS
Cf. A000670.
Sequence in context: A001910 A052773 A062147 * A349535 A069321 A211179
KEYWORD
nonn
AUTHOR
Thomas Wieder, Jun 03 2012
STATUS
approved