The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212959 Number of (w,x,y) such that w,x,y are all in {0,...,n} and |w-x| = |x-y|. 76
 1, 4, 11, 20, 33, 48, 67, 88, 113, 140, 171, 204, 241, 280, 323, 368, 417, 468, 523, 580, 641, 704, 771, 840, 913, 988, 1067, 1148, 1233, 1320, 1411, 1504, 1601, 1700, 1803, 1908, 2017, 2128, 2243, 2360, 2481, 2604, 2731, 2860, 2993, 3128, 3267 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In the following guide to related sequences: M=max(x,y,z), m=min(x,y,z), and R=range=M-m. In some cases, it is an offset of the listed sequence which fits the conditions shown for w,x,y. Each sequence satisfies a linear recurrence relation, some of which are identified in the list by the following code (signature): A: 2,0,-2,1, i.e.: a(n)=2*a(n-1)-2*a(n-3)+a(n-4); B: 3,-2,-2,3,-1; C: 4,-6,4,-1; D: 1,2,-2,-1,1; E: 2,1,-4,1,2,-1; F: 2,-1,1,-2,1; G: 2,-1,0,1,-2,1; H: 2,-1,2,-4,2,-1,2,-1; I: 3,-3,2,-3,3,-1; J: 4,-7,8,-7,4,-1. ... A212959 ... |w-x|=|x-y| ...... recurrence type A A212960 ... |w-x| != |x-y| ................... B A212683 ... |w-x| < |x-y| .................... B A212684 ... |w-x| >= |x-y| ................... B A212963 ... |w-x| != |x-y| != |y-w| .......... B A212964 ... |w-x| < |x-y| < |y-w| ............ B A006331 ... |w-x| < y ........................ C A005900 ... |w-x| <= y ....................... C A212965 ... w = R ............................ D A212966 ... 2*w = R A212967 ... w < R ............................ E A212968 ... w >= R ........................... E A077043 ... w = x > R ........................ A A212969 ... w != x and x > R ................. E A212970 ... w != x and x < R ................. E A055998 ... w = x + y - 1 A011934 ... w < floor((x+y)/2) ............... B A182260 ... w > floor((x+y)/2) ............... B A055232 ... w <= floor((x+y)/2) .............. B A011934 ... w >= floor((x+y)/2) .............. B A212971 ... w < floor((x+y)/3) ............... B A212972 ... w >= floor((x+y)/3) .............. B A212973 ... w <= floor((x+y)/3) .............. B A212974 ... w > floor((x+y)/3) ............... B A212975 ... R is even ........................ E A212976 ... R is odd ......................... E A212978 ... R = 2*n - w - x A212979 ... R = average{w,x,y} A212980 ... w < x + y and x < y .............. B A212981 ... w <= x+y and x < y ............... B A212982 ... w < x + y and x <= y ............. B A212983 ... w <= x + y and x <= y ............ B A002623 ... w >= x + y and x <= y ............ B A087811 ... w = 2*x + y ...................... A A008805 ... w = 2*x + 2*y .................... D A000982 ... 2*w = x + y ...................... F A001318 ... 2*w = 2*x + y .................... F A001840 ... w = 3*x + y A212984 ... 3*w = x + y A212985 ... 3*w = 3*x + y A001399 ... w = 2*x + 3*y A212986 ... 2*w = 3*x + y A008810 ... 3*x = 2*x + y .................... F A212987 ... 3*w = 2*x + 2*y A001972 ... w = 4*x + y ...................... G A212988 ... 4*w = x + y ...................... G A212989 ... 4*w = 4*x + y A008812 ... 5*w = 2*x + 3*y A016061 ... n < w + x + y <= 2*n ............. C A000292 ... w + x + y <=n .................... C A000292 ... 2*n < w + x + y <= 3*n ........... C A212977 ... n/2 < w + x + y <= n A143785 ... w < R < x ........................ E A005996 ... w < R <= x ....................... E A128624 ... w <= R <= x ...................... E A213041 ... R = 2*|w - x| .................... A A213045 ... R < 2*|w - x| .................... B A087035 ... R >= 2*|w - x| ................... B A213388 ... R <= 2*|w - x| ................... B A171218 ... M < 2*m .......................... B A213389 ... R < 2|w - x| ..................... E A213390 ... M >= 2*m ......................... E A213391 ... 2*M < 3*m ........................ H A213392 ... 2*M >= 3*m ....................... H A213393 ... 2*M > 3*m ........................ H A213391 ... 2*M <= 3*m ....................... H A047838 ... w = |x + y - w| .................. A A213396 ... 2*w < |x + y - w| ................ I A213397 ... 2*w >= |x + y - w| ............... I A213400 ... w < R < 2*w A069894 ... min(|w-x|,|x-y|) = 1 A000384 ... max(|w-x|,|x-y|) = |w-y| A213395 ... max(|w-x|,|x-y|) = w A213398 ... min(|w-x|,|x-y|) = x ............. A A213399 ... max(|w-x|,|x-y|) = x ............. D A213479 ... max(|w-x|,|x-y|) = w+x+y ......... D A213480 ... max(|w-x|,|x-y|) != w+x+y ........ E A006918 ... |w-x| + |x-y| > w+x+y ............ E A213481 ... |w-x| + |x-y| <= w+x+y ........... E A213482 ... |w-x| + |x-y| < w+x+y ............ E A213483 ... |w-x| + |x-y| >= w+x+y ........... E A213484 ... |w-x|+|x-y|+|y-w| = w+x+y A213485 ... |w-x|+|x-y|+|y-w| != w+x+y ....... J A213486 ... |w-x|+|x-y|+|y-w| > w+x+y ........ J A213487 ... |w-x|+|x-y|+|y-w| >= w+x+y ....... J A213488 ... |w-x|+|x-y|+|y-w| < w+x+y ........ J A213489 ... |w-x|+|x-y|+|y-w| <= w+x+y ....... J A213490 ... w,x,y,|w-x|,|x-y| distinct A213491 ... w,x,y,|w-x|,|x-y| not distinct A213493 ... w,x,y,|w-x|,|x-y|,|w-y| distinct A213495 ... w = min(|w-x|,|x-y|,|w-y|) A213492 ... w != min(|w-x|,|x-y|,|w-y|) A213496 ... x != max(|w-x|,|x-y|) A213498 ... w != max(|w-x|,|x-y|,|w-y|) A213497 ... w = min(|w-x|,|x-y|) A213499 ... w != min(|w-x|,|x-y|) A213501 ... w != max(|w-x|,|x-y|) A213502 ... x != min(|w-x|,|x-y|) ... A211795 includes a guide for sequences that count 4-tuples (w,x,y,z) having all terms in {0,...,n} and satisfying selected properties.  Some of the sequences indexed at A211795 satisfy recurrences that are represented in the above list. Partial sums of the numbers congruent to {1,3} mod 6 (see A047241). - Philippe Deléham, Mar 16 2014 REFERENCES A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152. P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797. LINKS Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1). FORMULA a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). G.f.: (1+2*x+3*x^2)/((1+x)*(1-x)^3). a(n) + A212960(n) = (n+1)^3. a(n) = (6*n^2 + 8*n + 3 + (-1)^n)/4. - Luce ETIENNE, Apr 05 2014 EXAMPLE a(1)=4 counts these (x,y,z): (0,0,0), (1,1,1), (0,1,0), (1,0,1). Numbers congruent to {1, 3} mod 6 : 1, 3, 7, 9, 13, 15, 19, ... a(0) = 1; a(1) = 1 + 3 = 4; a(2) = 1 + 3 + 7 = 11; a(3) = 1 + 3 + 7 + 9 = 20; a(4) = 1 + 3 + 7 + 9 + 13 = 33; a(5) = 1 + 3 + 7 + 9 + 13 + 15 = 48; etc. - Philippe Deléham, Mar 16 2014 MATHEMATICA t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Abs[w - x] == Abs[x - y], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]]; m = Map[t[#] &, Range[0, 50]]   (* A212959 *) PROG (PARI) a(n)=(6*n^2+8*n+3)\/4 \\ Charles R Greathouse IV, Jul 28 2015 CROSSREFS Cf. A047241, A211795. Sequence in context: A024982 A038425 A301084 * A046279 A301074 A090541 Adjacent sequences:  A212956 A212957 A212958 * A212960 A212961 A212962 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jun 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 08:47 EST 2020. Contains 338762 sequences. (Running on oeis4.)