The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212685 Number of (w,x,y,z) with all terms in {1,...,n} and |w-x|=w+|y-z|. 3
 0, 0, 2, 7, 18, 36, 64, 103, 156, 224, 310, 415, 542, 692, 868, 1071, 1304, 1568, 1866, 2199, 2570, 2980, 3432, 3927, 4468, 5056, 5694, 6383, 7126, 7924, 8780, 9695, 10672, 11712, 12818, 13991, 15234, 16548, 17936, 19399, 20940, 22560 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For a guide to related sequences, see A211795. LINKS Index entries for linear recurrences with constant coefficients, signature (3, -2, -2, 3, -1). FORMULA a(n)=3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5). G.f.: (2*x^2 + x^3 + x^4)/(1 - 3*x + 2*x^2 + 2*x^3 - 3*x^4 + x^5). a(n)=(-3+3*(-1)^n+4*n-6*n^2+8*n^3)/24. [Colin Barker, Jun 10 2012] MATHEMATICA t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Abs[w - x] == w + Abs[y - z], s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; Map[t[#] &, Range[0, 40]]   (* A212685 *) LinearRecurrence[{3, -2, -2, 3, -1}, {0, 0, 2, 7, 18}, 40] CROSSREFS Cf. A211795. Sequence in context: A141631 A172188 A077131 * A176854 A086741 A229183 Adjacent sequences:  A212682 A212683 A212684 * A212686 A212687 A212688 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 01:58 EST 2020. Contains 338780 sequences. (Running on oeis4.)