login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212685 Number of (w,x,y,z) with all terms in {1,...,n} and |w-x|=w+|y-z|. 3
0, 0, 2, 7, 18, 36, 64, 103, 156, 224, 310, 415, 542, 692, 868, 1071, 1304, 1568, 1866, 2199, 2570, 2980, 3432, 3927, 4468, 5056, 5694, 6383, 7126, 7924, 8780, 9695, 10672, 11712, 12818, 13991, 15234, 16548, 17936, 19399, 20940, 22560 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For a guide to related sequences, see A211795.

LINKS

Table of n, a(n) for n=0..41.

Index entries for linear recurrences with constant coefficients, signature (3, -2, -2, 3, -1).

FORMULA

a(n)=3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5).

G.f.: (2*x^2 + x^3 + x^4)/(1 - 3*x + 2*x^2 + 2*x^3 - 3*x^4 + x^5).

a(n)=(-3+3*(-1)^n+4*n-6*n^2+8*n^3)/24. [Colin Barker, Jun 10 2012]

MATHEMATICA

t = Compile[{{n, _Integer}}, Module[{s = 0},

(Do[If[Abs[w - x] == w + Abs[y - z], s = s + 1],

{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];

Map[t[#] &, Range[0, 40]]   (* A212685 *)

LinearRecurrence[{3, -2, -2, 3, -1}, {0, 0, 2, 7, 18}, 40]

CROSSREFS

Cf. A211795.

Sequence in context: A141631 A172188 A077131 * A176854 A086741 A229183

Adjacent sequences:  A212682 A212683 A212684 * A212686 A212687 A212688

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 24 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 01:58 EST 2020. Contains 338780 sequences. (Running on oeis4.)