

A087035


Maximum value taken on by f(P)=sum(i=1..n, p(i)*p(n+1i) ) as {p(1),p(2),...,p(n)} ranges over all permutations P of {1,2,3,...n}.


4



1, 4, 13, 28, 53, 88, 137, 200, 281, 380, 501, 644, 813, 1008, 1233, 1488, 1777, 2100, 2461, 2860, 3301, 3784, 4313, 4888, 5513, 6188, 6917, 7700, 8541, 9440, 10401, 11424, 12513, 13668, 14893, 16188, 17557, 19000, 20521, 22120, 23801
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The corresponding minimum value of f(P) is given by A000292(n)=binomial(n+3,3).
The number of distinct values of f(P) is given by A087034.
Also, number of (w,x,y) with all terms in {0,...,n1} and 2wx <= max(w,x,y)min(w,x,y). For a guide to related sequences, see A212959.  Clark Kimberling, Jun 10 2012


LINKS

Table of n, a(n) for n=1..41.
Index entries for linear recurrences with constant coefficients, signature (3,2,2,3,1).


FORMULA

From Clark Kimberling, Jun 10 2012: (Start)
a(n) = 3*a(n1)2*a(n2)2*a(n3)+3*a(n4)a(n5).
G.f.: (x + x^2 + 3*x^3  x^4)/(((1  x)^4)*(1 + x)).
a(n+1) + A213045(n) = (n+1)^3. (End)
a(n) = (2*(n1)*(n+1)*(2*n+3)3*(1)^n+9)/12.  Bruno Berselli, Jun 11 2012


EXAMPLE

a(3)=13, since f takes on the values 10 and 13: f({1,2,3})=10, f({1,3,2)}=13, f({2,1,3})=13, f({2,3,1})=13, f({3,1,2})=13 and f({3,2,1})=10.


MATHEMATICA

t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Max[w, x, y]  Min[w, x, y] >= 2 Abs[w  x],
s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 45]]


CROSSREFS

Cf. A000292, A087034, A110610, A212959.
Sequence in context: A155356 A060488 A054968 * A212578 A112560 A009561
Adjacent sequences: A087032 A087033 A087034 * A087036 A087037 A087038


KEYWORD

nonn,easy


AUTHOR

John W. Layman, Jul 31 2003


EXTENSIONS

a(11) and a(12) from R. J. Mathar, Jun 26 2012
Merged with a sequence of Clark Kimberling by Max Alekseyev, Jun 27 2012


STATUS

approved



