OFFSET
0,2
COMMENTS
From Gary W. Adamson, Mar 02 2010: (Start)
Given the tetrahedral numbers, A000292, shift the offset to 0; then
(1 + 4x + 10x^2 + 20x^3 + ...)*(1 + 4x^2 + 10x^4 + 20x^6 + ...) =
(1 + 4x^2 + 14x^3 + 36x^4 + ...) (End)
LINKS
M. R. Bremner, Free associative algebras, noncommutative Grobner bases, and universal associative envelopes for nonassociative structures, arXiv preprint arXiv:1303.0920 [math.RA], 2013.
Index entries for linear recurrences with constant coefficients, signature (4,-2,-12,17,8,-28,8,17,-12,-2,4,-1).
FORMULA
a(2*k) = (4*k^2 + 24*k + 21)*binomial(k + 5, 5)/21 = A059600(k); a(2*k + 1) = 4*binomial(k + 6, 6)*(7 + 2*k)/7 = 4*A050486(k), k >= 0.
a(0)=1, a(1)=4, a(2)=14, a(3)=36, a(4)=85, a(5)=176, a(6)=344, a(7)=624, a(8)=1086, a(9)=1800, a(10)=2892, a(11)=4488, a(n)=4*a(n-1)-2*a(n-2)- 12*a(n-3)+17*a(n-4)+8*a(n-5)-28*a(n-6)+8*a(n-7)+17*a(n-8)-12*a(n-9)- 2*a(n-10)+4*a(n-11)-a(n-12). - Harvey P. Dale, Jul 02 2011
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^2))^4, {x, 0, 40}], x] (* or *) LinearRecurrence[ {4, -2, -12, 17, 8, -28, 8, 17, -12, -2, 4, -1}, {1, 4, 14, 36, 85, 176, 344, 624, 1086, 1800, 2892, 4488}, 40] (* Harvey P. Dale, Jul 02 2011 *)
PROG
(PARI) Vec(1/((1-x)*(1-x^2))^4 + O(x^40)) \\ Michel Marcus, Jan 13 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved