login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061989 Number of ways to place 3 nonattacking queens on a 3 X n board. 17
0, 0, 0, 0, 4, 14, 36, 76, 140, 234, 364, 536, 756, 1030, 1364, 1764, 2236, 2786, 3420, 4144, 4964, 5886, 6916, 8060, 9324, 10714, 12236, 13896, 15700, 17654, 19764, 22036, 24476, 27090, 29884, 32864, 36036, 39406, 42980, 46764, 50764 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

V. Kotesovec, Ways of placing non-attacking queens and kings..., part of "Between chessboard and computer", 1996, pp. 204 - 206.

E. Lucas, Recreations mathematiques I, Albert Blanchard, Paris, 1992, p. 231.

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

G.f.: 2*x^4*(2*x^2-x+2)/(x-1)^4. Recurrence: a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4), n >= 7. Explicit formula (H. Tarry, 1890): a(n)=(n-3)*(n^2-6*n+12), n >= 3.

(4, 14, 36...) is the binomial transform of row 4 of A117937: (4, 10, 12, 6). - Gary W. Adamson, Apr 09 2006

MATHEMATICA

CoefficientList[Series[2 x^4 (2 x^2 - x + 2) / (x-1)^4, {x, 0, 50}], x] (* Vincenzo Librandi, May 02 2013 *)

CROSSREFS

Cf. A061990.

Essentially the same as A079908.

Cf. A117937.

Sequence in context: A295180 A177110 A213045 * A079908 A038164 A193522

Adjacent sequences:  A061986 A061987 A061988 * A061990 A061991 A061992

KEYWORD

nonn,easy

AUTHOR

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 29 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 12:34 EST 2017. Contains 295001 sequences.