login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208615 Number of Young tableaux A(n,k) with n k-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing); square array A(n,k), n>=0, k>=0, read by antidiagonals. 19
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 6, 10, 1, 1, 1, 1, 15, 53, 35, 1, 1, 1, 1, 43, 491, 587, 126, 1, 1, 1, 1, 133, 6091, 25187, 7572, 462, 1, 1, 1, 1, 430, 87781, 1676707, 1725819, 109027, 1716, 1, 1, 1, 1, 1431, 1386529, 140422657, 705002611, 144558247, 1705249, 6435, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

A(n,k) is also the number of (n*k-1)-step walks on k-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_k) we have p_1<=p_2<=...<=p_k or p_1>=p_2>=...>=p_k.

LINKS

Alois P. Heinz, Antidiagonals n = 0..25, flattened

EXAMPLE

A(2,3) = 6:

  +---+      +---+      +---+      +---+      +---+      +---+

  |123|      |123|      |124|      |125|      |134|      |135|

  |456|      |654|      |356|      |346|      |256|      |246|

  +---+---+  +---+---+  +---+---+  +---+---+  +---+---+  +---+---+

  |x  |100|  |x  |100|  |x  |100|  |x  |100|  |x  |100|  |x  |100|

  | x |110|  | x |110|  | x |110|  | x |110|  |x  |200|  |x  |200|

  |  x|111|  |  x|111|  |x  |210|  |x  |210|  | x |210|  | x |210|

  |x  |211|  |  x|112|  |  x|211|  | x |220|  |  x|211|  | x |220|

  | x |221|  | x |122|  | x |221|  |  x|221|  | x |221|  |  x|221|

  |  x|222|  |x  |222|  |  x|222|  |  x|222|  |  x|222|  |  x|222|

  +---+---+  +---+---+  +---+---+  +---+---+  +---+---+  +---+---+

Square array A(n,k) begins:

  1, 1,   1,      1,         1,            1,                1, ...

  1, 1,   1,      1,         1,            1,                1, ...

  1, 1,   3,      6,        15,           43,              133, ...

  1, 1,  10,     53,       491,         6091,            87781, ...

  1, 1,  35,    587,     25187,      1676707,        140422657, ...

  1, 1, 126,   7572,   1725819,    705002611,     396803649991, ...

  1, 1, 462, 109027, 144558247, 398084427253, 1672481205752413, ...

MAPLE

b:= proc() option remember;

      `if`(nargs<2, 1, `if`(args[1]=args[nargs],

      `if`(args[1]=0, 1, 2* b(args[1]-1, seq(args[i], i=2..nargs))),

      `if`(args[1]>0, b(args[1]-1, seq(args[i], i=2..nargs)), 0)

          +add(`if`(args[j]>args[j-1], b(seq(args[i] -`if`(i=j, 1, 0)

                , i=1..nargs)), 0), j=2..nargs) ))

    end:

A:= (n, k)-> `if`(n=0 or k=0, 1, b(n-1, n$(k-1))):

seq(seq(A(n, d-n), n=0..d), d=0..12);

MATHEMATICA

b[args__] := b[args] = If[(nargs = Length[{args}]) < 2, 1, If[First[{args}] == Last[{args}], If[First[{args}] == 0, 1, 2*b[First[{args}]-1, Sequence @@ Rest[{args}]]], If[First[{args}] > 0, b[First[{args}]-1, Sequence @@ Rest[{args}]], 0] + Sum [If[{args}[[j]] > {args}[[j-1]], b[Sequence @@ Table[{args}[[i]] - If[i == j, 1, 0], {i, 1, nargs}]], 0], {j, 2, nargs}] ] ]; a[n_, k_] := If[n == 0 || k == 0, 1, b[n-1, Sequence @@ Array[n&, k-1]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-Fran├žois Alcover, Dec 12 2013, translated from Maple *)

CROSSREFS

Rows 0+1, 2-10 give: A000012, A141351 (for n>1), A208616, A208617, A208618, A208619, A208620, A208621, A208622, A208623.

Columns 0+1, 2-10 give: A000012, A088218, A185148, A208624, A208625, A208626, A208627, A208628, A208629, A208630.

Main diagonal gives: A208631.

Antidiagonal sums give: A208729.

Sequence in context: A208673 A010122 A220693 * A058663 A124371 A147989

Adjacent sequences:  A208612 A208613 A208614 * A208616 A208617 A208618

KEYWORD

nonn,tabl,walk

AUTHOR

Alois P. Heinz, Feb 29 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 00:43 EDT 2019. Contains 326169 sequences. (Running on oeis4.)