login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185148 Number of rectangular arrangements of [1,3n] in 3 increasing sequences of size n and n monotonic sequences of size 3. 2
1, 6, 53, 587, 7572, 109027, 1705249, 28440320, 499208817, 9134237407, 172976239886, 3371587949969, 67351686970929, 1374179898145980, 28557595591148315, 603118526483125869, 12920388129877471030, 280324904918707937001, 6151595155000424589327, 136384555249451824930126 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) counts a subset of A025035(n).

a(n) counts a more general set than A005789(n).

a(n) is also the number of (3*n-1)-step walks on 3-dimensional cubic lattice from (1,0,0) to (n,n,n) with steps in {(1,0,0), (0,1,0), (0,0,1)} such that for each point (x,y,z) we have x<=y<=z or x>=y>=z. - Alois P. Heinz, Feb 29 2012

LINKS

Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 1..700 (terms 0..200 from Alois P. Heinz)

FORMULA

a(n) ~ c * 27^n / n^4, where c = 0.608287207375... . - Vaclav Kotesovec, Sep 03 2014, updated Sep 07 2016

EXAMPLE

For n = 2 the a(2) = 6 arrangements are:

+---+  +---+  +---+  +---+  +---+  +---+

|1 4|  |1 6|  |1 3|  |1 3|  |1 2|  |1 2|

|2 5|  |2 5|  |2 5|  |2 4|  |3 5|  |3 4|

|3 6|  |3 4|  |4 6|  |5 6|  |4 6|  |5 6|

+---+  +---+  +---+  +---+  +---+  +---+

Only the second of these arrangements is not counted by A005789(2).

MAPLE

b:= proc(x, y, z) option remember;

      `if`(x=z, `if`(x=0, 1, 2*b(x-1, y, z)), `if`(x>0, b(x-1, y, z), 0)+

      `if`(y>x, b(x, y-1, z), 0)+ `if`(z>y, b(x, y, z-1), 0))

    end:

a:= n-> b(n-1, n$2):

seq(a(n), n=1..30);  # Alois P. Heinz, Feb 29 2012

MATHEMATICA

b[x_, y_, z_] := b[x, y, z] = If[x == z, If[x == 0, 1, 2*b[x - 1, y, z]], If[x > 0, b[x - 1, y, z], 0] + If[y > x, b[x, y - 1, z], 0] + If[z > y, b[x, y, z - 1], 0]];

a[n_] := b[n - 1, n, n];

Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 12 2017, after Alois P. Heinz *)

CROSSREFS

Cf. A025035, A005789.

Column k=3 of A208615. - Alois P. Heinz, Feb 29 2012

Sequence in context: A223345 A066357 A276365 * A243921 A109092 A068416

Adjacent sequences:  A185145 A185146 A185147 * A185149 A185150 A185151

KEYWORD

nonn

AUTHOR

Olivier Gérard, Feb 15 2011

EXTENSIONS

More terms and example from Alois P. Heinz, Feb 22 2011

Extended beyond a(8) by Alois P. Heinz, Feb 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 19:13 EDT 2019. Contains 325199 sequences. (Running on oeis4.)