login
A208617
Number of Young tableaux with 4 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
1
1, 1, 35, 587, 25187, 1676707, 140422657, 13675362559, 1489926719139, 177296325559211, 22661600612752505, 3073259866183533755, 438091469007903238421, 65166105272787401522141, 10056663348255976399237441, 1602608180008201242503733271
OFFSET
0,3
COMMENTS
Also the number of (4*n-1)-step walks on n-dimensional cubic lattice from (1,0,...,0) to (4,4,...,4) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n or p_1>=p_2>=...>=p_n.
CROSSREFS
Row n=4 of A208615.
Sequence in context: A219468 A267281 A114342 * A010951 A033281 A161648
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Feb 29 2012
STATUS
approved