login
A208729
Number of Young tableaux with i k-length rows with i,k>=0, i+k=n, increasing entries down the columns and monotonic entries along the rows (first row increasing).
2
1, 2, 3, 4, 7, 20, 107, 1251, 39449, 3601484, 993083163, 822645013440, 2233613397459767, 19448649149110190799, 611288282025228989179209, 65375294476542363327381312458, 27613527789685567969428106708416272, 41649724056091694466822995563486395949185
OFFSET
0,2
COMMENTS
a(n) is also the number of (i*k-1)-step walks (for all i,k>=0, i+k=n) on k-dimensional cubic lattice from (1,0,...,0) to (i,i,...,i) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_k) we have p_1<=p_2<=...<=p_k or p_1>=p_2>=...>=p_k.
LINKS
CROSSREFS
Antidiagonal sums of A208615.
Sequence in context: A119330 A373392 A084644 * A270777 A100686 A052340
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Mar 01 2012
STATUS
approved