login
A208620
Number of Young tableaux with 7 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
1
1, 1, 1716, 1705249, 14029729645, 279481714446151, 9493821912766657291, 475092942773985252468181, 32103240681864904236146331299, 2760173043757661872972723537937635, 289232902027154515366683463668541370431, 35764586048631587795405572631302247852797701
OFFSET
0,3
COMMENTS
Also the number of (7*n-1)-step walks on n-dimensional cubic lattice from (1,0,...,0) to (7,7,...,7) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n or p_1>=p_2>=...>=p_n.
CROSSREFS
Row n=7 of A208615.
Sequence in context: A318628 A194719 A140910 * A365027 A294854 A025039
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Feb 29 2012
STATUS
approved