login
A365027
a(n) = (7*n)!*(13*n/2)!*(n/2)! / ((3*n)!^2 * (7*n/2)!^2 * n!).
3
1, 1716, 20612592, 328206021000, 5876083665270000, 112210544802995673216, 2232092469681027490937400, 45670179632369542491712236480, 953926390279492216468973361270000, 20241460048032081192591594667805420400, 434878619369192244460121948456800558766592
OFFSET
0,2
COMMENTS
Fractional factorials are defined in terms of the gamma function; for example, (13*n/2)! = Gamma(1 + 13*n/2).
Row 3 of A365025.
LINKS
FORMULA
a(n) = Sum_{j = 0..3*n} binomial(7*n, 3*n-j)^2 * binomial(n+j-1, j).
a(n) ~ c^n * sqrt(91)/(42*Pi*n), where c = sqrt(13)*(13/3)^6.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all integers n and r.
a(n) = [x^n] G(x)^(78*n), where the power series G(x) = 1 + 22*x + 94622*x^2 + 821626080*x^3 + 9321370449728*x^4 + 122052794640882192*x^5 + 1748115226331150054950*x^6 + ... appears to have integer coefficients.
exp( Sum_{n >= 1} a(n)*x^n/n ) = F(x)^78, where the power series F(x) = 1 + 22*x + 132374*x^2 + 1405498512*x^3 + 18873219886000*x^4 + 288319543590164888*x^5 + 4779239354183722040470*x^6 + ... appears to have integer coefficients.
MAPLE
seq( simplify((7*n)!*(13*n/2)!*(n/2)! / ((3*n)!^2 * (7*n/2)!^2 * n!)), n = 0..15);
MATHEMATICA
A365027[n_]:=(7n)!(13n/2)!(n/2)!/((3n)!^2(7n/2)!^2n!); Array[A365027, 10, 0] (* Paolo Xausa, Oct 05 2023 *)
PROG
(Python)
from math import factorial
from sympy import factorial2
def A365027(n): return int(factorial(7*n)*factorial2(13*n)*factorial2(n)//((factorial2(7*n)*factorial(3*n))**2*factorial(n))) # Chai Wah Wu, Aug 24 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Aug 18 2023
STATUS
approved