login
A208631
Number of Young tableaux with n n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
2
1, 1, 3, 53, 25187, 705002611, 1672481205752413, 475092942773985252468181, 22081439406257212482754663652213531, 220381419513554767061883905294847700173775763891, 599868749018773480515945947095662848011697924400242771204050409
OFFSET
0,3
COMMENTS
Also the number of (n^2-1)-step walks on n-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n or p_1>=p_2>=...>=p_n.
LINKS
CROSSREFS
Main diagonal of A208615.
Sequence in context: A325725 A173357 A144537 * A093164 A092448 A344424
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Feb 29 2012
STATUS
approved