login
A208614
Number of partitions of n into distinct primes where all of the prime factors of n are represented in the partition.
2
1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 3, 1, 4, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 2, 3, 1, 2, 1, 3, 4, 2, 1, 5, 9, 6, 5, 4, 1, 6, 6, 7, 4, 3, 1, 4, 1, 4, 9, 20, 7, 3, 1, 7, 8, 6, 1, 15, 1, 5, 19, 11, 13, 9, 1, 21, 52, 7, 1
OFFSET
0,26
COMMENTS
Inspired by web-based discussion started by Rajesh Bhowmick.
LINKS
Rajesh Bhowmick, A bit different from Goldbach's conjecture (February 27-28, 2012)
EXAMPLE
a(p) = 1 for any prime p.
a(n) = 0 for 1, 4, 6, 8, 9, 22.
a(25) = 3 because 25 = 3 + 5 + 17 = 5 + 7 + 13 = 2 + 5 + 7 + 11.
MAPLE
with(numtheory):
a:= proc(n) local b, l, f;
b:= proc(h, j) option remember;
`if`(h=0, 1, `if`(j<1, 0,
`if`(l[j]>h, 0, b(h-l[j], j-1)) +b(h, j-1)))
end; forget(b);
f:= factorset(n);
l:= sort([({seq(ithprime(i), i=1..pi(n))} minus f)[]]);
b(n-add(i, i=f), nops(l))
end:
seq(a(n), n=0..300); # Alois P. Heinz, Mar 20 2012
MATHEMATICA
restrictedIntegerPartition[ n_Integer, list_List ] := 1 /; n == 0
restrictedIntegerPartition[ n_Integer, list_List ] := 0 /; n < 0 || Total[list] < n || n < Min[list]
restrictedIntegerPartition[ n_Integer, list_List ] := restrictedIntegerPartition[n - First[list], Rest[list]] + restrictedIntegerPartition[n, Rest[list]]
distinctPrimeFactors[ n_Integer ] := distinctPrimeFactors[n] = Map[First, FactorInteger[n]]
oeisA076694[ n_Integer ] := oeisA076694[n] = n - Total[distinctPrimeFactors[n]]
oeisA208614[ n_Integer ] := restrictedIntegerPartition[oeisA076694[n], Sort[Complement[Prime @ Range @ PrimePi @ oeisA076694 @ n, distinctPrimeFactors[n]] , Greater ]]
Table[oeisA208614[n], {n, 1, 100}]
PROG
(Maxima)
countRestrictedIntegerPartitions(n, L) := if ( n = 0 ) then 1 else if ( ( n < 0 ) or ( lsum(k, k, L) < n ) or ( n < lmin( L ) ) ) then 0 else block( [ m, R ], m : first(L), R : rest(L), countRestrictedIntegerPartitions(n, R) + countRestrictedIntegerPartitions(n - m, R));
distinctPrimeFactors(n) := map(first, ifactors(n));
oeisA076694(n) := n - lsum(k, k, distinctPrimeFactors(n));
listOfPrimesLessThanOrEqualTo (n) := block( [ list : [] , i], for i : 2 step 0 while i <= n do ( list : cons(i, list) , i : next_prime(i) ) , list );
oeisA208614(n) := block([ m, list ], m : oeisA076694(n), list : sort(listify(setdifference(setify(listOfPrimesLessThanOrEqualTo(m)), setify(distinctPrimeFactors(n)))), ordergreatp), countRestrictedIntegerPartitions(m, list));
makelist(oeisA208614(j), j, 1, 100);
CROSSREFS
Cf. A000586 (upper bound). A000586(A076694(n)) is a stricter upper bound.
Sequence in context: A190445 A141648 A118874 * A020851 A190457 A179833
KEYWORD
nonn
AUTHOR
Richard Penner, Feb 29 2012
STATUS
approved