The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208343 Triangle of coefficients of polynomials v(n,x) jointly generated with A208342; see the Formula section. 5
 1, 0, 2, 0, 1, 3, 0, 1, 2, 5, 0, 1, 2, 5, 8, 0, 1, 2, 6, 10, 13, 0, 1, 2, 7, 13, 20, 21, 0, 1, 2, 8, 16, 29, 38, 34, 0, 1, 2, 9, 19, 39, 60, 71, 55, 0, 1, 2, 10, 22, 50, 86, 122, 130, 89, 0, 1, 2, 11, 25, 62, 116, 187, 241, 235, 144, 0, 1, 2, 12, 28, 75, 150, 267, 392, 468 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS u(n,n) = A000045(n+1) (Fibonacci numbers). n-th row sum:  2^(n-1) As triangle T(n,k) with 0 <= k <= n, it is (0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 26 2012 LINKS FORMULA u(n,x) = u(n-1,x) + x*v(n-1,x), v(n,x) = x*u(n-1,x) + x*v(n-1,x), where u(1,x)=1, v(1,x)=1. From Philippe Deléham, Feb 26 2012: (Start) As triangle T(n,k) with 0 <= k <= n: T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-2) - T(n-2,k-1), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k > n or if k < 0. G.f.: (1-(1-y)*x)/(1-(1+y)*x+y*(1-y)*x^2). Sum_{k=0..n} T(n,k)*x^k = (-1)*A091003(n+1), A152166(n), A000007(n), A000079(n), A055099(n), A152224(n) for x = -2, -1, 0, 1, 2, 3 respectively. Sum_{k=0..n} T(n,k)*x^(n-k) = A087205(n), A140165(n+1), A016116(n+1), A000045(n+2), A000079(n), A122367(n), A006012(n), A052961(n), A154626(n) for x = -3, -2, -1, 0, 1, 2, 3, 4 respectively. (End) T(n,k) = A208748(n,k)/2^k. - Philippe Deléham, Mar 05 2012 EXAMPLE First five rows:   1;   0, 2;   0, 1, 3;   0, 1, 2, 5;   0, 1, 2, 5, 8; First five polynomials v(n,x):   1      2x       x + 3x^2       x + 2x^2 + 5x^3       x + 2x^2 + 5x^3 + 8x^4. MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 13; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]  (* A208342 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]  (* A208343 *) CROSSREFS Cf. A208343. Cf. A084938, A000045, A000079. Sequence in context: A096087 A128138 A308999 * A029324 A227551 A029318 Adjacent sequences:  A208340 A208341 A208342 * A208344 A208345 A208346 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Feb 25 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 23:44 EST 2020. Contains 338755 sequences. (Running on oeis4.)