login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227551 Number T(n,k) of partitions of n into distinct parts with boundary size k; triangle T(n,k), n>=0, 0<=k<=A227568(n), read by rows. 14
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 3, 1, 0, 1, 3, 2, 0, 1, 5, 2, 0, 1, 5, 4, 0, 1, 5, 6, 0, 1, 6, 7, 1, 0, 1, 6, 10, 1, 0, 1, 7, 11, 3, 0, 1, 9, 13, 4, 0, 1, 7, 18, 6, 0, 1, 8, 20, 9, 0, 1, 10, 21, 14, 0, 1, 9, 27, 16, 1, 0, 1, 10, 29, 22, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,14

COMMENTS

The boundary size is the number of parts having fewer than two neighbors.

LINKS

Alois P. Heinz, Rows n = 0..600, flattened

EXAMPLE

T(12,1) = 1: [12].

T(12,2) = 6: [1,11], [2,10], [3,4,5], [3,9], [4,8], [5,7].

T(12,3) = 7: [1,2,3,6], [1,2,9], [1,3,8], [1,4,7], [1,5,6], [2,3,7], [2,4,6].

T(12,4) = 1: [1,2,4,5].

Triangle T(n,k) begins:

  1;

  0, 1;

  0, 1;

  0, 1, 1;

  0, 1, 1;

  0, 1, 2;

  0, 1, 3;

  0, 1, 3, 1;

  0, 1, 3, 2;

  0, 1, 5, 2;

  0, 1, 5, 4;

  0, 1, 5, 6;

  0, 1, 6, 7, 1;

MAPLE

b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x, 1),

      expand(`if`(i<1, 0, `if`(t>1, x, 1)*b(n, i-1, iquo(t, 2))+

      `if`(i>n, 0, `if`(t=2, x, 1)*b(n-i, i-1, iquo(t, 2)+2)))))

    end:

T:= n-> (p->seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):

seq(T(n), n=0..30);

MATHEMATICA

b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t > 1, x, 1], Expand[If[i < 1, 0, If[t > 1, x, 1]*b[n, i - 1, Quotient[t, 2]] + If[i > n, 0, If[t == 2, x, 1]*b[n - i, i - 1, Quotient[t, 2] + 2]]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-Fran├žois Alcover, Dec 12 2016, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000007, A057427, A227559, A227560, A227561, A227562, A227563, A227564, A227565, A227566, A227567.

Row sums give: A000009.

Last elements of rows give: A227552.

Cf. A227345 (a version with trailing zeros), A053993, A201077, A227568, A224878 (one part of size 0 allowed).

Sequence in context: A308999 A208343 A029324 * A029318 A210381 A029297

Adjacent sequences:  A227548 A227549 A227550 * A227552 A227553 A227554

KEYWORD

nonn,look,tabf

AUTHOR

Alois P. Heinz, Jul 16 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 11:06 EDT 2019. Contains 327192 sequences. (Running on oeis4.)