login
A096087
Triangle read by rows: row n lists cubic remainders modulo n.
2
0, 1, 0, 1, 2, 0, 1, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 1, 6, 0, 1, 3, 5, 7, 0, 1, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 3, 4, 5, 7, 8, 9, 11, 0, 1, 5, 8, 12, 0, 1, 6, 7, 8, 13, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, 1, 3, 5, 7, 8, 9, 11, 13, 15, 0, 1, 2, 3
OFFSET
2,5
COMMENTS
Modulo 7 and 9 there are surprisingly few cubic remainders.
EXAMPLE
Irregular array begins:
0, 1;
0, 1, 2;
0, 1, 3;
0, 1, 2, 3, 4;
0, 1, 2, 3, 4, 5;
0, 1, 6;
0, 1, 3, 5, 7;
0, 1, 8;
0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
PROG
(PARI) maybecube(n) = { for(x=2, n, b=floor(x-1); a=vector(b+1); for(y=1, b, z=y^3%x; if(z<>0, a[y]=z; ) ); s=vecsort(a); c=1; print1(s[1]", "); for(j=2, b+1, if(s[j]<>s[j-1], c++; print1(s[j]", ") ) ); ) }
CROSSREFS
Cf. A096107.
Sequence in context: A143987 A309013 A112760 * A128138 A308999 A208343
KEYWORD
nonn,tabf
AUTHOR
Cino Hilliard, Jul 21 2004
EXTENSIONS
Edited by Don Reble, May 07 2006
STATUS
approved