This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143987 Eigentriangle of (A007318)^(-1); row sums = A014182, exp(1-x-exp(-x). 2
 1, -1, 1, 1, 2, 0, -1, 3, 0, -1, 1, -4, 0, 4, 1, -1, 5, 0, -10, -5, 2, 1, -6, 0, 20, 15, -12, -9, -1, 7, 0, -35, -35, 42, 63, 9, 1, -8, 0, 56, 70, -112, -252, -72, 50, -1, 9, 0, -84, -126, 252, 756, 324, -450, -267, 1, -10, 0, 120, 210, -504, -1890, -1080, 2250, 2670, 413 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Sum of n-th row terms = rightmost term of next row. Row sums = A014182: (1, 0, -1, 1, 2, -9, 9, 50, -267,...). Right border = A014182 shifted: (1, 1, 0, -1, 1, 2, -9,...). LINKS FORMULA (A007318^(-1) * (A014182 * 0^(n-k))) 0<=k<=n A007318^(-1) = the inverse of Pascal's triangle. Given A014182: (1, 0, -1, 1, 2, -9, 9,...) = expansion of exp(1-x-exp(-x), we preface A014182 with a "1" getting (1, 1, 0, -1, 1, 2, -9,...). Then diagonalize it as an infinite lower triangular matrix R = 1; 0, 1; 0, 0, 0; 0, 0, 0, -1; 0, 0, 0, 0, 1; ... Finally, take the inverse binomial transform of triangle R, getting A143987. Given the inverse of Pascal's triangle by rows, we apply termwise products of equal numbers of terms in the sequence: (1, 1, 0, -1, 1, 2, -9, 9,...). EXAMPLE First few rows of the triangle = 1; -1, 1; 1, -2, 0; -1, 3, 0, -1; 1, -4, 0, 4, 1; -1, 5, 0, -10, -5, 2; 1, -6, 0, 20, 15, -12, -9; -1, 7, 0, -35, -35, 42, 63, 9; 1, -8, 0, 56, 70, -112, -252, 72, 50; ... Example: row 4 = (1, -4, 0, 4, 1) = termwise products of (1, -4, 6, -4, 1) and (1, 1, 0, -1, 1).= (1*1, -4*1, 6*0, -4*-1, 1*1). CROSSREFS Cf. A007318, A014182. Sequence in context: A129503 A225682 A144185 * A309013 A112760 A096087 Adjacent sequences:  A143984 A143985 A143986 * A143988 A143989 A143990 KEYWORD tabl,sign AUTHOR Gary W. Adamson, Sep 07 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 09:22 EDT 2019. Contains 328026 sequences. (Running on oeis4.)