login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208342 Triangle of coefficients of polynomials u(n,x) jointly generated with A208343; see the Formula section. 5
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 5, 1, 1, 5, 7, 10, 8, 1, 1, 6, 9, 16, 18, 13, 1, 1, 7, 11, 23, 31, 33, 21, 1, 1, 8, 13, 31, 47, 62, 59, 34, 1, 1, 9, 15, 40, 66, 101, 119, 105, 55, 1, 1, 10, 17, 50, 88, 151, 205, 227, 185, 89, 1, 1, 11, 19, 61, 113, 213, 321, 414 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

coefficient of x^(n-1): A000045(n) (Fibonacci numbers).

n-th row sum:  2^(n-1)

Mirror image of triangle in A053538. - Philippe Deléham, Mar 05 2012

Subtriangle of the triangle T(n,k) given by (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 12 2012

LINKS

Table of n, a(n) for n=1..75.

FORMULA

u(n,x)=u(n-1,x)+x*v(n-1,x),

v(n,x)=x*u(n-1,x)+x*v(n-1,x),

where u(1,x)=1, v(1,x)=1.

T(n,k) = A208747(n,k)/2^k.- Philippe Deléham, Mar 05 2012

Contribution from Philippe Deléham, Mar 12 2012 . (Start)

As DELTA-triangle T(n,k) with 0<=k<=n :

G.f.: (1-y*x+y*x^2-y^2*x^2)/(1-x-y*x+t*x^2-y^2*x^2).

T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k<0 or if k>n. (End)

EXAMPLE

First five rows:

1

1...1

1...1...2

1...1...3...3

1...1...4...5...5

First five polynomials u(n,x): 1, 1 + x, 1 + x + x^2, 1 + x + 3x^2 + 3x^3, 1 + x + 4x^2 + 5x^3 + 5x^4.

(1, 0, -1, 1, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins :

1

1, 0

1, 1, 0

1, 1, 2, 0

1, 1, 3, 3, 0

1, 1, 4, 5, 5, 0

1, 1, 5, 7, 10, 8, 0

1, 1, 6, 9, 16, 18, 13, 0

1, 1, 7, 11, 23, 31, 33, 21, 0

MATHEMATICA

u[1, x_] := 1; v[1, x_] := 1; z = 13;

u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];

v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];

Table[Expand[u[n, x]], {n, 1, z/2}]

Table[Expand[v[n, x]], {n, 1, z/2}]

cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

TableForm[cu]

Flatten[%]  (* A208342 *)

Table[Expand[v[n, x]], {n, 1, z}]

cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

TableForm[cv]

Flatten[%]  (* A208343 *)

CROSSREFS

Cf. A208343.

Sequence in context: A183456 A183342 A046688 * A157283 A067049 A090641

Adjacent sequences:  A208339 A208340 A208341 * A208343 A208344 A208345

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Feb 25 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 22 22:27 EST 2014. Contains 249835 sequences.