login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208342 Triangle of coefficients of polynomials u(n,x) jointly generated with A208343; see the Formula section. 5
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 5, 1, 1, 5, 7, 10, 8, 1, 1, 6, 9, 16, 18, 13, 1, 1, 7, 11, 23, 31, 33, 21, 1, 1, 8, 13, 31, 47, 62, 59, 34, 1, 1, 9, 15, 40, 66, 101, 119, 105, 55, 1, 1, 10, 17, 50, 88, 151, 205, 227, 185, 89, 1, 1, 11, 19, 61, 113, 213, 321, 414 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

Coefficient of x^(n-1): A000045(n) (Fibonacci numbers).

n-th row sum: 2^(n-1).

Mirror image of triangle in A053538. - Philippe Deléham, Mar 05 2012

Subtriangle of the triangle T(n,k) given by (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 12 2012

LINKS

Table of n, a(n) for n=1..75.

FORMULA

u(n,x) = u(n-1,x) + x*v(n-1,x),

v(n,x) = x*u(n-1,x) + x*v(n-1,x),

where u(1,x) = 1, v(1,x) = 1.

T(n,k) = A208747(n,k)/2^k. - Philippe Deléham, Mar 05 2012

From Philippe Deléham, Mar 12 2012: (Start)

As DELTA-triangle T(n,k) with 0<=k<=n:

G.f.: (1-y*x+y*x^2-y^2*x^2)/(1-x-y*x+t*x^2-y^2*x^2).

T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k<0 or if k>n. (End)

O.g.f.: 1/(1 - z - x*z(1 - z + x*z)) = 1 + (1 + x)*z + (1 + x + 2*x^2)*z^2 + (1 + x + 3*x + 3*x^2)*z^3 + .... - Peter Bala, Dec 31 2015

EXAMPLE

First five rows:

  1

  1, 1

  1, 1, 2

  1, 1, 3, 3

  1, 1, 4, 5, 5

First five polynomials u(n,x): 1, 1 + x, 1 + x + x^2, 1 + x + 3*x^2 + 3*x^3, 1 + x + 4*x^2 + 5*x^3 + 5*x^4.

(1, 0, -1, 1, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins:

1

1, 0

1, 1, 0

1, 1, 2,  0

1, 1, 3,  3,  0

1, 1, 4,  5,  5,  0

1, 1, 5,  7, 10,  8,  0

1, 1, 6,  9, 16, 18, 13,  0

1, 1, 7, 11, 23, 31, 33, 21, 0

MATHEMATICA

u[1, x_] := 1; v[1, x_] := 1; z = 13;

u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];

v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];

Table[Expand[u[n, x]], {n, 1, z/2}]

Table[Expand[v[n, x]], {n, 1, z/2}]

cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

TableForm[cu]

Flatten[%]  (* A208342 *)

Table[Expand[v[n, x]], {n, 1, z}]

cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

TableForm[cv]

Flatten[%]  (* A208343 *)

CROSSREFS

Cf. A208343, A208510.

Sequence in context: A183456 A183342 A046688 * A157283 A067049 A090641

Adjacent sequences:  A208339 A208340 A208341 * A208343 A208344 A208345

KEYWORD

nonn,tabl,easy

AUTHOR

Clark Kimberling, Feb 25 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 11:39 EST 2016. Contains 279001 sequences.