login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208342 Triangle of coefficients of polynomials u(n,x) jointly generated with A208343; see the Formula section. 5
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 5, 1, 1, 5, 7, 10, 8, 1, 1, 6, 9, 16, 18, 13, 1, 1, 7, 11, 23, 31, 33, 21, 1, 1, 8, 13, 31, 47, 62, 59, 34, 1, 1, 9, 15, 40, 66, 101, 119, 105, 55, 1, 1, 10, 17, 50, 88, 151, 205, 227, 185, 89, 1, 1, 11, 19, 61, 113, 213, 321, 414 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

Coefficient of x^(n-1): A000045(n) (Fibonacci numbers).

n-th row sum: 2^(n-1).

Mirror image of triangle in A053538. - Philippe Deléham, Mar 05 2012

Subtriangle of the triangle T(n,k) given by (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 12 2012

LINKS

Table of n, a(n) for n=1..75.

FORMULA

u(n,x) = u(n-1,x) + x*v(n-1,x),

v(n,x) = x*u(n-1,x) + x*v(n-1,x),

where u(1,x) = 1, v(1,x) = 1.

T(n,k) = A208747(n,k)/2^k. - Philippe Deléham, Mar 05 2012

From Philippe Deléham, Mar 12 2012: (Start)

As DELTA-triangle T(n,k) with 0<=k<=n:

G.f.: (1-y*x+y*x^2-y^2*x^2)/(1-x-y*x+t*x^2-y^2*x^2).

T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k<0 or if k>n. (End)

O.g.f.: 1/(1 - z - x*z(1 - z + x*z)) = 1 + (1 + x)*z + (1 + x + 2*x^2)*z^2 + (1 + x + 3*x + 3*x^2)*z^3 + .... - Peter Bala, Dec 31 2015

EXAMPLE

First five rows:

  1

  1, 1

  1, 1, 2

  1, 1, 3, 3

  1, 1, 4, 5, 5

First five polynomials u(n,x): 1, 1 + x, 1 + x + x^2, 1 + x + 3*x^2 + 3*x^3, 1 + x + 4*x^2 + 5*x^3 + 5*x^4.

(1, 0, -1, 1, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins:

1

1, 0

1, 1, 0

1, 1, 2,  0

1, 1, 3,  3,  0

1, 1, 4,  5,  5,  0

1, 1, 5,  7, 10,  8,  0

1, 1, 6,  9, 16, 18, 13,  0

1, 1, 7, 11, 23, 31, 33, 21, 0

MATHEMATICA

u[1, x_] := 1; v[1, x_] := 1; z = 13;

u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];

v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];

Table[Expand[u[n, x]], {n, 1, z/2}]

Table[Expand[v[n, x]], {n, 1, z/2}]

cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

TableForm[cu]

Flatten[%]  (* A208342 *)

Table[Expand[v[n, x]], {n, 1, z}]

cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

TableForm[cv]

Flatten[%]  (* A208343 *)

CROSSREFS

Cf. A208343, A208510.

Sequence in context: A183456 A183342 A046688 * A157283 A067049 A090641

Adjacent sequences:  A208339 A208340 A208341 * A208343 A208344 A208345

KEYWORD

nonn,tabl,easy

AUTHOR

Clark Kimberling, Feb 25 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 30 05:51 EDT 2016. Contains 274307 sequences.