OFFSET
0,2
COMMENTS
LINKS
R. J. Mathar, Table of n, a(n) for n = 0..100
Index entries for linear recurrences with constant coefficients, signature (12, -28).
FORMULA
a(n) = 12*a(n-1) - 28*a(n-2) for n > 1. - Philippe Deléham, Jan 12 2009
a(n) = ( (6 + 2*sqrt(2))^n - (6 - 2*sqrt(2))^n )/(4*sqrt(2)).
G.f.: x/(1 - 12*x + 28*x^2). - Klaus Brockhaus, Jan 12 2009, corrected Oct 08 2009
E.g.f.: (1/(2*sqrt(2)))*exp(6*x)*sinh(2*sqrt(2)*x). - G. C. Greubel, Sep 13 2016
a(n) =2^(n-1)*A081179(n). - R. J. Mathar, Feb 04 2021
MATHEMATICA
Join[{a=1, b=12}, Table[c=12*b-28*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011 *)
LinearRecurrence[{12, -28}, {1, 12}, 20] (* Harvey P. Dale, May 23 2012 *)
Rest@ CoefficientList[Series[x/(1 - 12 x + 28 x^2), {x, 0, 19}], x] (* Michael De Vlieger, Sep 13 2016 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((6+2*r)^n-(6-2*r)^n)/(4*r): n in [1..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009
(Sage) [lucas_number1(n, 12, 28) for n in range(1, 20)] # Zerinvary Lajos, Apr 27 2009
(PARI) a(n)=([0, 1; -28, 12]^(n-1)*[1; 12])[1, 1] \\ Charles R Greathouse IV, Sep 13 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009
EXTENSIONS
Extended beyond a(7) by Klaus Brockhaus, Jan 12 2009
Edited by Klaus Brockhaus, Oct 08 2009
Offset corrected. - R. J. Mathar, Jun 19 2021
STATUS
approved