login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A016142 Expansion of 1/((1-3x)(1-9x)). 9
1, 12, 117, 1080, 9801, 88452, 796797, 7173360, 64566801, 581120892, 5230147077, 47071500840, 423644039001, 3812797945332, 34315186290957, 308836690967520, 2779530261754401, 25015772484929772, 225141952751788437 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is the number of lattices L in Z^(n+1) such that the quotient group Z^(n+1) / L is C_9. - Álvar Ibeas, Nov 29 2015

In the game of SET with four attributes there are 1080 potential SETs. See A090245. In the generalized game of SET with different numbers of attributes, the number of potential SETs is a(n+1). - Robert Price, Oct 14 2017

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

A. M. Hinz, S. Klavžar, U. Milutinović, C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 100. Book's website

FORMULA

a(n) = (1/6)*(9^(n+1) - 3^(n+1)).

a(n-1) = Sum_{i=1..n} binomial(n, i)*3^(n-i)*6^(i-1). - Sam Handler (sam_5_5_5_0(AT)yahoo.com), Jun 29 2004

a(n) = 12*a(n-1) - 27*a(n-2), a(0)=1, a(1)=12. - Vincenzo Librandi, Mar 14 2011

a(n) = A006100(n+2) - A006100(n+1), for n > 0. - Álvar Ibeas, Nov 29 2015

MAPLE

with(finance):seq(add(futurevalue( 1, 2, n+k), k=0..n), n=0..18); # Zerinvary Lajos, Jun 16 2008

MATHEMATICA

Join[{a=1, b=12}, Table[c=12*b-27*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011 *)

CoefficientList[Series[1/((1-3x)(1-9x)), {x, 0, 20}], x] (* or *) Table[ (9^(n+1) -3^(n+1))/6, {n, 0, 20}]  (* Harvey P. Dale, Apr 03 2011 *)

Table[ncards = 3^nattr; (ncards*(ncards - 1))/6, {nattr, 1, 20}] (* Robert Price, Oct 14 2017 *)

PROG

(Sage) [lucas_number1(n, 12, 27) for n in xrange(1, 20)] # Zerinvary Lajos, Apr 27 2009

(PARI) Vec(1/((1-3*x)*(1-9*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

(PARI) a(n) = (1/6)*(9^(n+1) - 3^(n+1)); \\ Joerg Arndt, Feb 23 2014

(MAGMA) [(1/6)*(9^(n+1)-3^(n+1)): n in [0..20]]; // Vincenzo Librandi, Feb 24 2014

CROSSREFS

Cf. A006100, A090245.

Sequence in context: A304827 A182671 A154346 * A105218 A180777 A163950

Adjacent sequences:  A016139 A016140 A016141 * A016143 A016144 A016145

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 01:59 EST 2018. Contains 318035 sequences. (Running on oeis4.)