This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154348 a(n) = 16*a(n-1)-56*a(n-2) for n>1; a(0)=0, a(1)=1. 1
 1, 16, 200, 2304, 25664, 281600, 3068416, 33325056, 361369600, 3915710464, 42414669824, 459354931200, 4974457389056, 53867442077696, 583309459456000, 6316374594945024, 68396663789584384, 740629643316428800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Third binomial transform of A164609, fourth binomial transform of A164608, fifth binomial transform of A054490, sixth binomial transform of A164607, seventh binomial transform of A083100, eighth binomial transform of A164683. lim_{n -> infinity} a(n)/a(n-1) = 8+2*sqrt(2) = 10.8284271247.... LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..135 FORMULA a(n) = 16*a(n-1)-56*a(n-2) for n>1; a(0)=0, a(1)=1. [From Philippe DELEHAM, Jan 12 2009] a(n) = ((8+2*sqrt(2))^n-(8-2*sqrt(2))^n)/(4*sqrt(2)). G.f.: 1/(1-16*x+56*x^2). [From Klaus Brockhaus, Jan 12 2009, corrected Oct 08 2009] MATHEMATICA Join[{a=1, b=16}, Table[c=16*b-56*a; a=b; b=c, {n, 40}]] (*From Vladimir Joseph Stephan Orlovsky, Feb 08 2011*) PROG (MAGMA) Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((8+2*r)^n-(8-2*r)^n)/(4*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; [From Klaus Brockhaus, Jan 12 2009] CROSSREFS Cf. A002193 (decimal expansion of sqrt(2)), A164609, A164608, A054490, A164607, A083100, A164683. Sequence in context: A081679 A154249 A125451 * A129333 A001810 A016165 Adjacent sequences:  A154345 A154346 A154347 * A154349 A154350 A154351 KEYWORD nonn,easy AUTHOR Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009 EXTENSIONS Extended beyond a(7) by Klaus Brockhaus, Jan 12 2009 Edited by Klaus Brockhaus, Oct 08 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .