login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038761 a(n) = 6*a(n-1)-a(n-2), n >= 2, a(0)=1, a(1)=9. 29
1, 9, 53, 309, 1801, 10497, 61181, 356589, 2078353, 12113529, 70602821, 411503397, 2398417561, 13979001969, 81475594253, 474874563549, 2767771787041, 16131756158697, 94022765165141, 548004834832149 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Bisection of A048654. - Lambert Klasen (lambert.klasen(AT)gmx.de), Nov 24 2004

This gives part of the (increasingly sorted) positive solutions y to the Pell equation x^2 - 2*y^2 = +7. For the x solutions see A038762. For the other part of solutions see A101386 and A253811. - Wolfdieter Lang, Feb 05 2015

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..400

M. J. DeLeon, Pell's Equation and Pell Number Triples, Fib. Quart., 14(1976), pp. 456-460.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (6,-1).

Index entries for sequences related to Chebyshev polynomials.

FORMULA

a(n) = {9*([3+2*sqrt(2)]^n -[3-2*sqrt(2)]^n)-([3+2*sqrt(2)]^(n-1) - [3-2*sqrt(2)]^(n-1))}/(4*sqrt(2)).

A038761 = sqrt{2*(A038762)^2-14}/2.

For n>1, a(n)-4a(n-1)=A001541(n)-A001542(n-2); e.g. 309-4*53=97=99-2. - Charlie Marion, Nov 12 2003

For n>0, a(n)=A046090(n)+A001653(n)+A001652(n-1)=A055997(n+1)+A001652(n-1); e.g., 309=120+169+20. - Charlie Marion, Oct 11 2006

G.f.: (1+3*x)/(1-6*x+x^2). - Philippe Deléham, Nov 03 2008

a(n) = third binomial transform of 1,6,8,48,64,384. - Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009

a(n)^2 + 2^2 = A124124(2*n+1)^2 + (A124124(2*n+1)+1)^2. - Hermann Stamm-Wilbrandt, Aug 31 2014

a(n) = irrational part of z(n) = (3 + sqrt(2))*(3 + 2*sqrt(2))^n, n >= 0. z(n) gives only part of the general positive solutions to the Pell equation x^2 - 2*y^2 = 7). See the Nagell reference in A038762 on how to find z(n), and a comment above. - Wolfdieter Lang, Feb 05 2015

a(n) = S(n, 6) + 3*S(n-1, 6), n >= 0, with the Chebyshev S-polynomials evaluated at x=6. See S(n-1, 6) = A001109(n). - Wolfdieter Lang, Mar 30 2015

EXAMPLE

A038762(3)^2 - 2*a(4)^2 = 2547^2 - 2*1801^2 = +7. - Wolfdieter Lang, Feb 05 2015

MAPLE

a[0]:=1: a[1]:=9: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..19); # Zerinvary Lajos, Jul 26 2006

MATHEMATICA

LinearRecurrence[{6, -1}, {1, 9}, 40] (* Vincenzo Librandi, Nov 16 2011 *)

PROG

(MAGMA) I:=[1, 9]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 16 2011

(PARI) a(n)=([0, 1; -1, 6]^n*[1; 9])[1, 1] \\ Charles R Greathouse IV, Apr 08 2016

CROSSREFS

Cf. A001541, A001542, A001652, A001653, A038762, A046090, A048654, A055997, A124124.

Sequence in context: A122588 A277999 A295203 * A003698 A001688 A144040

Adjacent sequences:  A038758 A038759 A038760 * A038762 A038763 A038764

KEYWORD

easy,nonn

AUTHOR

Barry E. Williams, May 02 2000

EXTENSIONS

Edited: Replaced the unspecific Pell comment. Moved a formula from the comment section to the formula section. - Wolfdieter Lang, Feb 05 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 17:44 EST 2017. Contains 295004 sequences.