login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081179 3rd binomial transform of (0,1,0,2,0,4,0,8,0,16,...). 10
0, 1, 6, 29, 132, 589, 2610, 11537, 50952, 224953, 993054, 4383653, 19350540, 85417669, 377052234, 1664389721, 7346972688, 32431108081, 143157839670, 631929281453, 2789470811028, 12313319895997, 54353623698786 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Binomial transform of 0, 1, 4, 14, 48, ... (A007070 with offset 1) and second binomial transform of A000129. - R. J. Mathar, Dec 10 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.

Index entries for linear recurrences with constant coefficients, signature (6,-7).

FORMULA

a(n) = 6a(n-1) - 7a(n-2), a(0)=0, a(1)=1. G.f.: x/(1-6x+7x^2). a(n) = ((3+sqrt(2))^n-(3-sqrt(2))^n)/(2*sqrt(2)). [Corrected by Al Hakanson (hawkuu(AT)gmail.com), Dec 27 2008]

a(n) = 3^(n-1) Sum_{i>=0} binomial(n, 2i+1) * (2/9)^i. - Sergio Falcon, Mar 15 2016

a(n) = 2^(-1/2)*7^(n/2)*sinh(n*arcsinh(sqrt(2/7)). - Robert Israel, Mar 15 2016

E.g.f.: exp(3*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017

MAPLE

f:= gfun:-rectoproc({a(n) = 6*a(n-1)-7*a(n-2), a(0)=0, a(1)=1}, a(n), remember):

map(f, [$0..50]); # Robert Israel, Mar 15 2016

MATHEMATICA

Join[{a=0, b=1}, Table[c=6*b-7*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)

CoefficientList[Series[x / (1 - 6 x + 7 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)

PROG

(Sage) [lucas_number1(n, 6, 7) for n in xrange(0, 23)] # Zerinvary Lajos, Apr 22 2009

(MAGMA) I:=[0, 1]; [n le 2 select I[n] else 6*Self(n-1)-7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013

CROSSREFS

Cf. A081180, A081182, A081183, A081184, A081185, A153593.

Sequence in context: A008549 A026675 A026873 * A026866 A045445 A026884

Adjacent sequences:  A081176 A081177 A081178 * A081180 A081181 A081182

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Mar 11 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 22 21:26 EST 2018. Contains 299469 sequences. (Running on oeis4.)