login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154345 B(n,k) an additive decomposition of (4^n-2^n)*B(n), B(n) the Bernoulli numbers (triangle read by rows). 6
1, 4, -2, 12, -15, 3, 32, -76, 36, 0, 80, -325, 275, 0, -30, 192, -1266, 1710, 0, -720, 180, 448, -4655, 9457, 0, -10290, 5670, -630, 1024, -16472, 48552, 0, -114240, 104160, -25200, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The Swiss-Knife polynomials A153641 can be understood as a sum of polynomials. Evaluated at x=1 and multiplied by n this results in a decomposition of (4^n-2^n) times the Bernoulli numbers A027641/A027642 (for n>0 and B_1 = 1/2).

LINKS

G. C. Greubel, Table of n, a(n) for the first 50 rows

Peter Luschny, The Swiss-Knife polynomials.

FORMULA

Let c(k) = frac{(-1)^{floor(k/4)}{2^{floor(k/2)}} [4 not div k] (Iverson notation).

B(n,k) = Sum(v=0..k,(-1)^(v)*binomial(k,v)*n*c(k)*(v+2)^(n-1));

B(n) = (Sum(k=0..n, B(n,k)) / (4^n-2^n)

EXAMPLE

1,

4,    -2,

12,   -15,    3,

32,   -76,    36,    0,

80,   -325,   275,   0, -30,

192,  -1266,  1710,  0, -720,    180,

448,  -4655,  9457,  0, -10290,  5670,   -630,

1024, -16472, 48552, 0, -114240, 104160, -25200,  0.

MAPLE

B := proc(n, k) local v, c; c := m -> if irem(m+1, 4) = 0 then 0 else 1/((-1)^iquo(m+1, 4)*2^iquo(m, 2)) fi; add((-1)^(v)*binomial(k, v)*n*c(k)*(v+2)^(n-1), v=0..k) end: seq(print(seq(B(n, k), k=0..(n-1))), n=0..8);

MATHEMATICA

c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; b[n_, k_] := Sum[(-1)^v*Binomial[k, v]*n*c[k]*(v+2)^(n-1), {v, 0, k}]; Table[b[n, k], {n, 0, 8}, {k, 0, n - 1}] // Flatten (* Jean-Fran├žois Alcover, Jul 30 2013, after Maple *)

CROSSREFS

Cf. A153641, A154341, A154342, A154343, A154344.

Sequence in context: A111667 A019239 A143944 * A058095 A105196 A167557

Adjacent sequences:  A154342 A154343 A154344 * A154346 A154347 A154348

KEYWORD

easy,sign,tabl

AUTHOR

Peter Luschny, Jan 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 22 00:25 EDT 2017. Contains 292326 sequences.