OFFSET
0,3
COMMENTS
See the comment in A099279. This is example a=5.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal) and (1/2,1/2)-fences if there are 5 kinds of half-squares available. A (w,g)-fence is a tile composed of two w X 1 pieces separated horizontally by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/4,1/4)-fences and (1/4,3/4)-fences if there are 5 kinds of (1/4,1/4)-fences available. - Michael A. Allen, Mar 30 2023
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..650
Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
Sergio Falcon, Some series of reciprocal k-Fibonacci numbers, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; ResearchGate link.
Index entries for linear recurrences with constant coefficients, signature (26,26,-1).
FORMULA
a(n) = A052918(n-1)^2, n >= 1, a(0) = 0.
a(n) = 26*a(n-1) + 26*a(n-2) - a(n-3), n >= 3; a(0)=0, a(1)=1, a(2)=25.
a(n) = 27*a(n-1) - a(n-2) - 2*(-1)^n, n >= 2; a(0)=0, a(1)=1.
a(n) = 2*(T(n, 27/2) - (-1)^n)/29 with twice the Chebyshev's T(n, x) polynomials of the first kind. 2*T(n, 27/2) = A090248(n).
G.f.: x*(1-x)/((1-27*x+x^2)*(1+x)) = x*(1-x)/(1-26*x-26*x^2+x^3).
a(n) = (1 - (-1)^n)/2 + 25*Sum_{r=1..n-1} r*a(n-r). - Michael A. Allen, Mar 30 2023
Product_{n>=2} (1 + (-1)^n/a(n)) = (5 + sqrt(29))/10 (Falcon, 2016, p. 189, eq. (3.1)). - Amiram Eldar, Dec 03 2024
MAPLE
with (combinat):seq(fibonacci(n, 5)^2, n=0..16); # Zerinvary Lajos, Apr 09 2008
MATHEMATICA
LinearRecurrence[{26, 26, -1}, {0, 1, 25}, 30] (* Harvey P. Dale, Sep 25 2019 *)
PROG
(Magma) [(2/29)*(Evaluate(ChebyshevFirst(n), 27/2) -(-1)^n): n in [0..30]]; // G. C. Greubel, Aug 21 2022
(SageMath)
def A099365(n): return (2/29)*(chebyshev_T(n, 27/2) - (-1)^n)
[A099365(n) for n in (0..30)] # G. C. Greubel, Aug 21 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 18 2004
STATUS
approved