This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099363 An inverse Chebyshev transform of 1-x. 5
 1, -1, 1, -2, 2, -5, 5, -14, 14, -42, 42, -132, 132, -429, 429, -1430, 1430, -4862, 4862, -16796, 16796, -58786, 58786, -208012, 208012, -742900, 742900, -2674440, 2674440, -9694845, 9694845, -35357670, 35357670, -129644790, 129644790, -477638700, 477638700, -1767263190, 1767263190 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Second binomial transform of the expansion of c(-x)^3. The g.f. is transformed to 1-x under the Chebyshev transformation A(x)->(1/(1+x^2))A(x/(1+x^2)). A208355(n) = abs(a(n)). - Reinhard Zumkeller, Mar 03 2012 LINKS FORMULA G.f.: (1-(1-x)c(x^2))/x where c(x) is the g.f. of the Catalan numbers A000108; a(n)=sum{k=0..n, (k+1)C(n, (n-k)/2)(0^k-sum{j=0..k, C(k, j)(-1)^(k-j)*j})(1+(-1)^(n-k))/(n+k+2)}. a(n) = (-1)^n A208355(n) = (-1)^n A000108([(n+1)/2]): Repeated Catalan numbers with alternating sign. - M. F. Hasler, Aug 25 2012 Conjecture: (n+3)*a(n) +(-n-1)*a(n-1) -4*n*a(n-2) +4*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 26 2012 PROG (Sage) def A099363_list(n) :     D = [0]*(n+2); D[1] = 1     b = True; h = 2; R = []     for i in range(2*n-1) :         if b :             for k in range(h, 0, -1) : D[k] -= D[k-1]             h += 1; R.append((-1)^(h//2)*D[2])         else :             for k in range(1, h, 1) : D[k] += D[k+1]         b = not b     return R A099363_list(39) # Peter Luschny, Jun 03 2012 (PARI) A099363(n)=(-1)^n*A000108((n+1)\2) \\ - M. F. Hasler, Aug 25 2012 CROSSREFS Cf. A000245. Cf. A106181, A129996 and A208355, which also consist of duplicated Catalan numbers A000108. - M. F. Hasler, Aug 25 2012 Sequence in context: A095014 A129996 A208355 * A106181 A098887 A259097 Adjacent sequences:  A099360 A099361 A099362 * A099364 A099365 A099366 KEYWORD easy,sign AUTHOR Paul Barry, Oct 13 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 21:52 EST 2019. Contains 319310 sequences. (Running on oeis4.)