OFFSET
0,1
COMMENTS
a(n+1)/a(n) converges to ((27+sqrt(725))/2) = 26.96291201...
Lim a(n)/a(n+1) as n approaches infinity = 0.03708798... = 2/(27+sqrt(725)) = (27-sqrt(725))/2.
Lim a(n+1)/a(n) as n approaches infinity = 26.96291201... = (27+sqrt(725))/2 = 2/(27-sqrt(725)).
Lim a(n)/a(n+1) = 27 - Lim a(n+1)/a(n).
A Chebyshev T-sequence with Diophantine property.
a(n) gives the general (nonnegative integer) solution of the Pell equation a^2 - 29*(5*b)^2 =+4 with companion sequence b(n)=A097781(n-1), n>=0.
REFERENCES
O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).
LINKS
FORMULA
a(n) = 27a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 27. a(n) = ((27+sqrt(725))/2)^n + ((27-sqrt(725))/2)^n, (a(n))^2 = a(2n)+2.
a(n) = S(n, 27) - S(n-2, 27) = 2*T(n, 27/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 27)=A097781(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120.
a(n) = ap^n + am^n, with ap := (27+5*sqrt(29))/2 and am := (27-5*sqrt(29))/2.
G.f.: (2-27*x)/(1-27*x+x^2).
a(-n) = a(n). - Michael Somos, Nov 01 2008
A087130(2*n) = a(n). - Michael Somos, Nov 01 2008
EXAMPLE
a(4) = 528527 = 27a(3) - a(2) = 27*19602 - 727 = ((27+sqrt(725))/2)^4 + ((27-sqrt(725))/2)^4 = 528526.999998107 + 0.000001892 = 528527.
(x;y) = (2;0), (27;1), (727;27), (19602;728), ... give the nonnegative integer solutions to x^2 - 29*(5*y)^2 = +4.
MATHEMATICA
a[0] = 2; a[1] = 27; a[n_] := 27a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
RecurrenceTable[{a[0]==2, a[1]==27, a[n]==27a[n-1]-a[n-2]}, a, {n, 20}] (* or *) LinearRecurrence[{27, -1}, {2, 27}, 20] (* Harvey P. Dale, Jan 03 2018 *)
PROG
(Sage) [lucas_number2(n, 27, 1) for n in range(0, 16)] # Zerinvary Lajos, Jun 27 2008
(PARI) {a(n) = (-1)^n * subst(2 * poltchebi(2*n), 'x, -5/2 * I)}; /* Michael Somos, Nov 04 2008 */
(Python)
def aupton(idx):
alst = [2, 27]
for n in range(2, idx+1): alst.append(27*alst[-1] - alst[-2])
return alst
print(aupton(16)) # Michael S. Branicky, Feb 27 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 24 2004
EXTENSIONS
More terms from Robert G. Wilson v, Jan 30 2004
Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004
STATUS
approved