login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046213 First numerator and then denominator of 1/2-Pascal triangle (by row). To get a 1/2-Pascal triangle, replace "2" in third row of Pascal triangle with "1/2" and calculate all other rows as in Pascal triangle. 22
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 3, 2, 1, 1, 1, 1, 5, 2, 3, 1, 5, 2, 1, 1, 1, 1, 7, 2, 11, 2, 11, 2, 7, 2, 1, 1, 1, 1, 9, 2, 9, 1, 11, 1, 9, 1, 9, 2, 1, 1, 1, 1, 11, 2, 27, 2, 20, 1, 20, 1, 27, 2, 11, 2, 1, 1, 1, 1, 13, 2, 19, 1, 67, 2, 40, 1, 67, 2, 19, 1, 13, 2, 1, 1, 1, 1, 15, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,10

LINKS

Peter J. C. Moses, Table of n, a(n) for n = 1..10000

EXAMPLE

1/1;

1/1  1/1;

1/1  1/2  1/1;

1/1  3/2  3/2  1/1;

1/1  5/2  3/1  5/2  1/1;

1/1  7/2 11/2 11/2  7/2  1/1;

1/1  9/2  9/1 11/1  9/1  9/2  1/1;

1/1 11/2 27/2 20/1 20/1 27/2 11/2 1/1; ...

MATHEMATICA

fractionalPascal[1, _] = {1}; fractionalPascal[2, _] = {1, 1}; fractionalPascal[3, frac_] = {1, frac, 1}; fractionalPascal[n_, frac_] := fractionalPascal[n, frac] = Join[{1}, Map[Total, Partition[fractionalPascal[n-1, frac], 2, 1]], {1}]; Flatten[Map[Transpose, Transpose[{Numerator[#], Denominator[#]}]&[Map[fractionalPascal[#, 1/2]&, Range[15]]]]] (* Peter J. C. Moses, Apr 04 2013 *)

CROSSREFS

Sequence in context: A185155 A249095 A026536 * A215625 A260222 A181386

Adjacent sequences:  A046210 A046211 A046212 * A046214 A046215 A046216

KEYWORD

nonn,tabf,less

AUTHOR

Mohammad K. Azarian

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 10:13 EDT 2019. Contains 322330 sequences. (Running on oeis4.)