login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087130 a(n)=5*a(n-1)+a(n-2); a(0)=2, a(1)=5. 10
2, 5, 27, 140, 727, 3775, 19602, 101785, 528527, 2744420, 14250627, 73997555, 384238402, 1995189565, 10360186227, 53796120700, 279340789727, 1450500069335, 7531841136402, 39109705751345, 203080369893127 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Sequence related to the 'silver mean' [5;5,5,5,5,...].

The solution to the general recurrence a(n)=(2k+1)a(n-1)+a(n-2), a(0)=2, a(1)=2k+1 is a(n)=((2k+1)+sqrt(4k^2+4k+5))^n+(2k+1)-sqrt(4k^2+4k+5))^n)/2; a(n)=2^(1-n)sum{j=0..n, C(n, 2j)(4k^2+4k+5)^j(2k+1)^(n-2j)}; a(n)=2T(n, (2k+1)x/2)(-1)^i with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. - Paul Barry, Nov 15 2003

Primes in this sequence include a(0) = 2; a(1) = 5; a(4) = 727; a(8) = 528527 (3) semiprimes in this sequence include a(7) = 101785; a(13) = 1995189565; a(16) = 279340789727; a(19) = 39109705751345; a(20) = 203080369893127 - Jonathan Vos Post, Feb 09 2005

[a(n)]^2 - 29*(A052918(n-1)^2 = 4*(-1)^n; n>0 [From Gary W. Adamson, Oct 07 2008]

For more information about this type of recurrence follow the Khovanova link and see A054413 and A086902. - Johannes W. Meijer, Jun 12 2010

Binomial transform of A072263. - Johannes W. Meijer, Aug 01 2010

LINKS

Table of n, a(n) for n=0..20.

P. Bhadouria, D. Jhala, B. Singh, Binomial Transforms of the k-Lucas Sequences and its [sic] Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence L_{5,n}.

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index entries for sequences related to Chebyshev polynomials.

Index to sequences with linear recurrences with constant coefficients, signature (5,1).

FORMULA

a(n) = ((5+sqrt(29))/2)^n+((5-sqrt(29))/2)^n

a(n) = A100236(n) + 1.

E.g.f. : 2exp(5x/2)cosh(sqrt(29)x/2); a(n)=2^(1-n)sum{k=0..floor(n/2), C(n, 2k)29^k5^(n-2k)}. a(n)=2T(n, 5i/2)(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. - Paul Barry, Nov 15 2003

O.g.f.: (-2+5*x)/(-1+5*x+x^2). - R. J. Mathar, Dec 02 2007

a(-n) = (-1)^n * a(n). - Michael Somos, Nov 01 2008

A090248(n) = a(2*n). 5 * A097834(n) = a(2*n + 1). - Michael Somos, Nov 01 2008

Limit(a(n+k)/a(k), k=infinity) = (A087130(n) + A052918(n-1)*sqrt(29))/2. Limit(A087130(n)/A052918(n-1), n= infinity) = sqrt(29). - Johannes W. Meijer, Jun 12 2010

a(3n+1) = A041046(5n), a(3n+2) = A041046(5n+3) and a(3n+3) = 2*A041046 (5n+4). - Johannes W. Meijer, Jun 12 2010

PROG

(PARI) {a(n) = if( n<0, (-1)^n * a(-n), polsym(x^2 - 5*x -1, n) [n + 1])} /* Michael Somos, Nov 04 2008 */

(Sage) [lucas_number2(n, 5, -1) for n in xrange(0, 21)]# [From Zerinvary Lajos, May 14 2009]

CROSSREFS

Cf. A006497, A014448, A085447.

Cf. A086902, A000032.

A052918 [From Gary W. Adamson, Oct 07 2008]

Sequence in context: A041571 A042259 A100105 * A097565 A079716 A203195

Adjacent sequences:  A087127 A087128 A087129 * A087131 A087132 A087133

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Aug 16 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 24 07:22 EST 2014. Contains 249872 sequences.