login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087130 a(n)=5*a(n-1)+a(n-2); a(0)=2, a(1)=5. 10
2, 5, 27, 140, 727, 3775, 19602, 101785, 528527, 2744420, 14250627, 73997555, 384238402, 1995189565, 10360186227, 53796120700, 279340789727, 1450500069335, 7531841136402, 39109705751345, 203080369893127 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Sequence related to the 'silver mean' [5;5,5,5,5,...].

The solution to the general recurrence a(n)=(2k+1)a(n-1)+a(n-2), a(0)=2, a(1)=2k+1 is a(n)=((2k+1)+sqrt(4k^2+4k+5))^n+(2k+1)-sqrt(4k^2+4k+5))^n)/2; a(n)=2^(1-n)sum{j=0..n, C(n, 2j)(4k^2+4k+5)^j(2k+1)^(n-2j)}; a(n)=2T(n, (2k+1)x/2)(-1)^i with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. - Paul Barry, Nov 15 2003

Primes in this sequence include a(0) = 2; a(1) = 5; a(4) = 727; a(8) = 528527 (3) semiprimes in this sequence include a(7) = 101785; a(13) = 1995189565; a(16) = 279340789727; a(19) = 39109705751345; a(20) = 203080369893127 - Jonathan Vos Post, Feb 09 2005

[a(n)]^2 - 29*(A052918(n-1)^2 = 4*(-1)^n; n>0 [From Gary W. Adamson, Oct 07 2008]

For more information about this type of recurrence follow the Khovanova link and see A054413 and A086902. - Johannes W. Meijer, Jun 12 2010

Binomial transform of A072263. - Johannes W. Meijer, Aug 01 2010

LINKS

Table of n, a(n) for n=0..20.

P. Bhadouria, D. Jhala, B. Singh, Binomial Transforms of the k-Lucas Sequences and its [sic] Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence L_{5,n}.

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index entries for sequences related to Chebyshev polynomials.

Index to sequences with linear recurrences with constant coefficients, signature (5,1).

FORMULA

a(n) = ((5+sqrt(29))/2)^n+((5-sqrt(29))/2)^n

a(n) = A100236(n) + 1.

E.g.f. : 2exp(5x/2)cosh(sqrt(29)x/2); a(n)=2^(1-n)sum{k=0..floor(n/2), C(n, 2k)29^k5^(n-2k)}. a(n)=2T(n, 5i/2)(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. - Paul Barry, Nov 15 2003

O.g.f.: (-2+5*x)/(-1+5*x+x^2). - R. J. Mathar, Dec 02 2007

a(-n) = (-1)^n * a(n). - Michael Somos, Nov 01 2008

A090248(n) = a(2*n). 5 * A097834(n) = a(2*n + 1). - Michael Somos, Nov 01 2008

Limit(a(n+k)/a(k), k=infinity) = (A087130(n) + A052918(n-1)*sqrt(29))/2. Limit(A087130(n)/A052918(n-1), n= infinity) = sqrt(29). - Johannes W. Meijer, Jun 12 2010

a(3n+1) = A041046(5n), a(3n+2) = A041046(5n+3) and a(3n+3) = 2*A041046 (5n+4). - Johannes W. Meijer, Jun 12 2010

PROG

(PARI) {a(n) = if( n<0, (-1)^n * a(-n), polsym(x^2 - 5*x -1, n) [n + 1])} /* Michael Somos, Nov 04 2008 */

(Sage) [lucas_number2(n, 5, -1) for n in xrange(0, 21)]# [From Zerinvary Lajos, May 14 2009]

CROSSREFS

Cf. A006497, A014448, A085447.

Cf. A086902, A000032.

A052918 [From Gary W. Adamson, Oct 07 2008]

Sequence in context: A041571 A042259 A100105 * A097565 A079716 A203195

Adjacent sequences:  A087127 A087128 A087129 * A087131 A087132 A087133

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Aug 16 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 24 23:00 EDT 2014. Contains 248516 sequences.