login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087130 a(n) = 5*a(n-1)+a(n-2) for n>1, a(0)=2, a(1)=5. 12
2, 5, 27, 140, 727, 3775, 19602, 101785, 528527, 2744420, 14250627, 73997555, 384238402, 1995189565, 10360186227, 53796120700, 279340789727, 1450500069335, 7531841136402, 39109705751345, 203080369893127 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Sequence related to the 'silver mean' [5;5,5,5,5,...].

The solution to the general recurrence b(n) = (2*k+1)*b(n-1)+b(n-2) with b(0)=2, b(1) = 2*k+1 is b(n) = ((2*k+1)+sqrt(4*k^2+4*k+5))^n+(2*k+1)-sqrt(4*k^2+4*k+5))^n)/2; b(n) = 2^(1-n)*Sum_{j=0..n} C(n, 2*j)*(4*k^2+4*k+5)^j*(2*k+1)^(n-2*j); b(n) = 2*T(n, (2*k+1)*x/2)(-1)^i with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. - Paul Barry, Nov 15 2003

Primes in this sequence include a(0) = 2; a(1) = 5; a(4) = 727; a(8) = 528527 (3) semiprimes in this sequence include a(7) = 101785; a(13) = 1995189565; a(16) = 279340789727; a(19) = 39109705751345; a(20) = 203080369893127 - Jonathan Vos Post, Feb 09 2005

a(n)^2 - 29*A052918(n-1)^2 = 4*(-1)^n, with n>0 - Gary W. Adamson, Oct 07 2008

For more information about this type of recurrence follow the Khovanova link and see A054413 and A086902. - Johannes W. Meijer, Jun 12 2010

Binomial transform of A072263. - Johannes W. Meijer, Aug 01 2010

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

P. Bhadouria, D. Jhala, B. Singh, Binomial Transforms of the k-Lucas Sequences and its [sic] Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence L_{5,n}.

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (5,1).

FORMULA

a(n) = ((5+sqrt(29))/2)^n+((5-sqrt(29))/2)^n.

a(n) = A100236(n) + 1.

E.g.f. : 2*exp(5*x/2)*cosh(sqrt(29)*x/2); a(n) = 2^(1-n)*Sum_{k=0..floor(n/2)} C(n, 2k)*29^k*5^(n-2*k). a(n) = 2T(n, 5i/2)(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. - Paul Barry, Nov 15 2003

O.g.f.: (-2+5*x)/(-1+5*x+x^2). - R. J. Mathar, Dec 02 2007

a(-n) = (-1)^n * a(n). - Michael Somos, Nov 01 2008

A090248(n) = a(2*n). 5 * A097834(n) = a(2*n + 1). - Michael Somos, Nov 01 2008

Limit(a(n+k)/a(k), k=infinity) = (A087130(n) + A052918(n-1)*sqrt(29))/2. Limit(A087130(n)/A052918(n-1), n= infinity) = sqrt(29). - Johannes W. Meijer, Jun 12 2010

a(3n+1) = A041046(5n), a(3n+2) = A041046(5n+3) and a(3n+3) = 2*A041046 (5n+4). - Johannes W. Meijer, Jun 12 2010

MATHEMATICA

RecurrenceTable[{a[0] == 2, a[1] == 5, a[n] == 5 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *)

PROG

(PARI) {a(n) = if( n<0, (-1)^n * a(-n), polsym(x^2 - 5*x -1, n) [n + 1])} /* Michael Somos, Nov 04 2008 */

(Sage) [lucas_number2(n, 5, -1) for n in xrange(0, 21)] # Zerinvary Lajos, May 14 2009

(MAGMA) I:=[2, 5]; [n le 2 select I[n] else 5*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016

CROSSREFS

Cf. A006497, A014448, A085447.

Cf. A086902, A000032.

Cf. A052918. [From Gary W. Adamson, Oct 07 2008]

Sequence in context: A041571 A042259 A100105 * A265266 A097565 A079716

Adjacent sequences:  A087127 A087128 A087129 * A087131 A087132 A087133

KEYWORD

nonn,easy

AUTHOR

Paul Barry, Aug 16 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 11:41 EST 2016. Contains 278764 sequences.