login
A041571
Denominators of continued fraction convergents to sqrt(303).
2
1, 2, 5, 27, 59, 145, 4989, 10123, 25235, 136298, 297831, 731960, 25184471, 51100902, 127386275, 688032277, 1503450829, 3694933935, 127131204619, 257957343173, 643045890965, 3473186797998, 7589419486961, 18652025771920, 641758295732241, 1302168617236402
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,5048,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^4-2*x^3+5*x^2+2*x+1)*(x^6-29*x^3-1) / (x^12-5048*x^6+1). - Colin Barker, Nov 19 2013
a(n) = 5048*a(n-6) - a(n-12) for n>11. - Vincenzo Librandi, Dec 20 2013
MATHEMATICA
Denominator[Convergents[Sqrt[303], 30]] (* Vincenzo Librandi, Dec 20 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 5048, 0, 0, 0, 0, 0, -1}, {1, 2, 5, 27, 59, 145, 4989, 10123, 25235, 136298, 297831, 731960}, 30] (* Harvey P. Dale, Mar 24 2023 *)
PROG
(Magma) I:=[1, 2, 5, 27, 59, 145, 4989, 10123, 25235, 136298, 297831, 731960]; [n le 12 select I[n] else 5048*Self(n-6)-Self(n-12): n in [1..40]]; // Vincenzo Librandi, Dec 20 2013
CROSSREFS
Sequence in context: A138613 A299104 A090744 * A042259 A100105 A087130
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 19 2013
STATUS
approved