login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086902 a(n) = 7*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 7. 36
2, 7, 51, 364, 2599, 18557, 132498, 946043, 6754799, 48229636, 344362251, 2458765393, 17555720002, 125348805407, 894997357851, 6390330310364, 45627309530399, 325781497023157, 2326097788692498, 16608466017870643, 118585359913786999, 846705985414379636 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n+1)/a(n) converges to (7+sqrt(53))/2 = 7.14005... = A176439.

Lim a(n)/a(n+1) as n approaches infinity = 0.1400549... = 2/(7+sqrt(53)) = (sqrt(53)-7)/2 = 1/A176439 = A176439 - 7.

From Johannes W. Meijer, Jun 12 2010: (Start)

In general sequences with recurrence a(n) = k*a(n-1)+a(n-2) with a(0)=2 and a(1)=k [and a(-1)=0] have generating function (2-k*x)/(1-k*x-x^2). If k is odd (k>=3) they satisfy a(3n+1) = b(5n), a(3n+2)=b(5*n+3), a(3n+3)=2*b(5n+4) where b(n) is the sequence of numerators of continued fraction convergents to sqrt(k^2+4). [If k is even then a(n)/2, for n>=1, is the sequence of numerators of continued fraction convergents to sqrt(k^2/4+1).]

For the sequence given above k=7 which implies that it is associated with A041090.

For a similar statement about sequences with recurrence a(n) = k*a(n-1)+a(n-2) but with a(0)=1 [and a(-1)=0] see A054413; a sequence that is associated with A041091.

For more information follow the Khovanova link and see A087130, A140455 and A178765.

(End)

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (7,1).

FORMULA

a(n) = ((7+sqrt(53))/2)^n + ((7-sqrt(53))/2)^n.

E.g.f. : 2exp(7x/2)cosh(sqrt(53)x/2); a(n)=2^(1-n)sum{k=0..floor(n/2), C(n, 2k)53^k7^(n-2k)}. a(n)=2T(n, 7i/2)(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. - Paul Barry, Nov 15 2003

G.f.: (2-7x)/(1-7x-x^2). - Philippe Deléham, Nov 16 2008

From Johannes W. Meijer, Jun 12 2010: (Start)

a(2n+1) = 7*A097837(n), a(2n) = A099368(n).

a(3n+1) = A041090(5n), a(3n+2) = A041090(5*n+3), a(3n+3) = 2*A041090(5n+4).

Limit(a(n+k)/a(k), k=infinity) = (A086902(n) + A054413(n-1)*sqrt(53))/2.

Limit(A086902(n)/A054413(n-1), n=infinity) = sqrt(53). (End)

EXAMPLE

a(4) = 7*a(3) + a(2) = 7*364 + 51 = 2599.

MATHEMATICA

RecurrenceTable[{a[0] == 2, a[1] == 7, a[n] == 7 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *)

PROG

(PARI) a(n)=([0, 1; 1, 7]^n*[2; 7])[1, 1] \\ Charles R Greathouse IV, Apr 06 2016

(Magma) I:=[2, 7]; [n le 2 select I[n] else 7*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016

CROSSREFS

Cf. A058316, A176439.

Cf. A000032 (k=1), A006497 (k=3), A087130 (k=5), A086902 (k=7), A087798 (k=9), A001946 (k=11), A088316 (k=13), A090301 (k=15), A090306 (k=17). - Johannes W. Meijer, Jun 12 2010

Sequence in context: A058721 A340027 A324513 * A265042 A249754 A224879

Adjacent sequences: A086899 A086900 A086901 * A086903 A086904 A086905

KEYWORD

nonn,easy

AUTHOR

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 18 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 02:09 EST 2022. Contains 358712 sequences. (Running on oeis4.)