login
A077428
Minimal (positive) solution a(n) of Pell equation a(n)^2 - D(n)*b(n)^2 = +4 with D(n)= A077425(n). The companion sequence is b(n)=A078355(n).
20
3, 11, 66, 5, 27, 46, 146, 4098, 7, 51, 302, 1523, 258, 25, 4562498, 9, 83, 1000002, 29, 125619266, 402, 82, 68123, 2408706, 11, 123, 33710, 173, 12166146, 190, 578, 3723, 4354, 45371, 23550, 13, 171, 124846, 1703027, 18498, 110, 12448646853698, 786
OFFSET
1,1
COMMENTS
Computed from Perron's table (see reference p. 108, for n = 1..28) which gives the minimal x,y values for the Diophantine eq. x^2 - x*y - ((D(n)-1)/4)*y^2= +1, resp., -1 if D(n)=A077425(n), resp, D(n)=A077425(n) and D(n) also in A077426.
The conversion from the x,y values of Perron's table to the minimal a=a(n) and b=b(n) solutions of a^2 - D(n)*b^2 =+4 is as follows. If D(n)=A077425(n) but not from A077426 (period length of continued fraction of (sqrt(D(n))+1)/2 is even) then a(n)=2*x(n)-y(n) and b(n)=y(n). E.g. D(4)=21 with Perron's (x,y)=(3,1) and (a,b)=(5,1). 1=b(4)=A078355(4). If D(n)=A077425(n) appears also in A077426 (odd period length of continued fraction of (sqrt(D(n))+1)/2) then a(n)=(2*x-y)^2+2 and b(n)=(2*x-y)*y. E.g. D(7)=37 with Perron's (x,y)=(7,2) leading to (a,b)=(146,24) with 24=b(7)=A078355(7).
The generic D(n) values are those from A078371(k-1) := (2*k+3)*(2*k-1), for k>=1, which are 5 (mod 8). For such D values the minimal solution is (a(n),b(n))=(2*k+1,1) (e.g. D(16)=77= A078371(3) with a(16)=2*4+1=9 and b(16)=A078355(16)=1).
The general solution of Pell a^2-D(n)*b^2 = +4 with generic D(n)=A077425(n)=A078371(k-1), k>=1, is a(n,m)= 2*T(m+1,(2*k+1)/2) and b(n,m)= S(m,2*k+1), m>=0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second, kind. See A053120 resp. A049310.
For non-generic D(n) (not from A078371) the general solution of a^2-D(n)*b^2 = +4 is a(n,m)= 2*T(m+1,a(n)/2) and b(n,m)= b(n)*S(m,a(n)), m>=0, with Chebyshev's polynomials and in this case b(n)>1.
REFERENCES
O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).
LINKS
MATHEMATICA
d = Select[Range[5, 300, 4], !IntegerQ[Sqrt[#]]&]; a[n_] := Module[{a, b, r}, a /. {r = Reduce[a > 0 && b > 0 && a^2 - d[[n]]*b^2 == 4, {a, b}, Integers]; (r /. C[1] -> 0) || (r /. C[1] -> 1) // ToRules} // Select[#, IntegerQ, 1] &] // First; Table[a[n], {n, 1, 43}] (* Jean-François Alcover, Jul 30 2013 *)
CROSSREFS
Sequence in context: A132101 A280775 A303341 * A222765 A326091 A173235
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Nov 29 2002
EXTENSIONS
More terms from Max Alekseyev, Mar 03 2010
STATUS
approved