login
A203429
a(n) = w(n+1)/(3*w(n)), where w = A203428.
2
-2, 27, -576, 16875, -629856, 28588707, -1528823808, 94143178827, -6561000000000, 510526328421483, -43873901280755712, 4127185885192141707, -421812572812955541504, 46542953399578857421875
OFFSET
1,1
LINKS
FORMULA
a(n) = -(-3)^(n-1) * (n+1)^n. - G. C. Greubel, Sep 28 2023
MATHEMATICA
(* First program *)
f[j_]:= 1/(3*j); z = 16;
v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}]
1/Table[v[n], {n, z}] (* A203428 *)
Table[v[n]/(3*v[n+1]), {n, z}] (* A203429 *)
(* Second program *)
Table[-(-3)^(n-1)*(n+1)^n, {n, 20}] (* G. C. Greubel, Sep 28 2023 *)
PROG
(Magma) [-(-3)^(n-1)*(n+1)^n: n in [1..20]]; // G. C. Greubel, Sep 28 2023
(SageMath) [-(-3)^(n-1)*(n+1)^n for n in range(1, 21)] # G. C. Greubel, Sep 28 2023
CROSSREFS
Sequence in context: A245050 A242009 A121137 * A153850 A138458 A090248
KEYWORD
sign
AUTHOR
Clark Kimberling, Jan 02 2012
STATUS
approved