This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090245 Maximum numbers of cards that would have no SET in an n-attribute version of the SET card game. 6
1, 2, 4, 9, 20, 45, 112 (list; graph; refs; listen; history; text; internal format)



Or, largest size of an n-dimensional capset (i.e., a subset of (Z/3Z)^n that does not contain any lines {a, a+r, a+2r}). - Terence Tao, Feb 20 2009

Or, size of maximal cap in the affine geometry AG(n+1,3). - N. J. A. Sloane, Oct 25 2014

It may only be a conjecture that the interpretation in terms of the SET game gives the same sequence for all n as the maximal cap problem. - N. J. A. Sloane, Oct 25 2014


James Abello (DIMACS Institute, Rutgers University), The majority rule and combinatorial geometry (via the symmetric group), preprint, 2004.

B. Monjardet, Acyclic domains of linear orders: a survey, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 139-160.


Table of n, a(n) for n=0..6.

Brink, D. V., 1997, The search for SET

B. L. Davis and D. Maclagan, The Card Game SET

Ben Davis and Diane Maclagan, The Card Game SET, The Mathematical Intelligencer, Vol. 25:3 (Summer 2003), pp. 33-40.

Yves Edel, Home page

Michael Follett, et al. Partitions of AG (4, 3) into Maximal Caps, arXiv preprint arXiv:1302.4703 (2013).

Michael Follett, et al. Partitions of AG (4, 3) into Maximal Caps, Discrete Math., 337 (2014), 1-8.

Guardians of SET, SET Home Page

Pierre Jalinière, Le jeu Set, Images des Mathématiques, CNRS, 2013.

J. Peebles, Cap Set Bounds and Matrix Multiplication, Senior Thesis, Harvey Mudd College, 2013.

Ivars Peterson, SET Math

Ivars Peterson, SET Math

Ivars Peterson, SET Math.

Aaron Potechin, Maximal caps in AG(6, 3), Designs, Codes and Cryptography, Volume 46, Number 3, March 2008.

SET card game, Official web site

Terence Tao, Bounds for the first few density Hales-Jewett numbers, and related quantities

Zabrocki, M., 2001, The Joy of SET


a(n) <= A003142(n).

Asymptotically, a(n) = O(3^n/n) and a(n) > (2.21...)^n. - Terence Tao, Feb 20 2009


Cf. A090246, A156989.

Sequence in context: A188460 A111099 A000632 * A006958 A036617 A007902

Adjacent sequences:  A090242 A090243 A090244 * A090246 A090247 A090248




Hans Havermann, Jan 23 2004


a(6) sent by Terence Tao, Feb 20 2009

Edited by N. J. A. Sloane, Feb 21 2009



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 29 10:31 EST 2015. Contains 264643 sequences.