OFFSET
0,1
COMMENTS
Pair sum operator. Columns have g.f. (1+x)*x^k. Row sums are A040000. Diagonal sums are (1,1,1,....). Riordan inverse is (1/(1+x), 1). A097806 = B*A059260^(-1), where B is the binomial matrix.
Triangle T(n,k), 0<=k<=n, read by rows given by [1, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, May 01 2007
Table T(n,k) read by antidiagonals. T(n,1) = 1, T(n,2) = 1, T(n,k) = 0, k > 2. - Boris Putievskiy, Jan 17 2013
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10010 (Rows 0 <= n <= 140)
Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
FORMULA
T(n, k) = if(n=k or n-k=1, 1, 0).
a(n) = A103451(n+1). - Philippe Deléham, Oct 16 2007
From Boris Putievskiy, Jan 17 2013: (Start)
a(n) = floor((i+2)/(t+2)), n > 0,
where i=n-t*(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). (End)
G.f.: (1+x)/(1-x*y). - R. J. Mathar, Aug 11 2015
EXAMPLE
Rows begin {1}, {1,1}, {0,1,1}, {0,0,1,1}...
From Boris Putievskiy, Jan 17 2013: (Start)
The start of the sequence as table:
1..1..0..0..0..0..0...
1..1..0..0..0..0..0...
1..1..0..0..0..0..0...
1..1..0..0..0..0..0...
1..1..0..0..0..0..0...
1..1..0..0..0..0..0...
1..1..0..0..0..0..0...
. . .
The start of the sequence as triangle array read by rows:
1;
1, 1;
0, 1, 1;
0, 0, 1, 1;
0, 0, 0, 1, 1;
0, 0, 0, 0, 1, 1;
0, 0, 0, 0, 0, 1, 1;
0, 0, 0, 0, 0, 0, 1, 1; . . .
Row number r (r>4) contains (r-2) times '0' and 2 times '1'. (End)
MAPLE
A097806 := proc(n, k)
if k =n or k=n-1 then
1;
else
0;
end if;
end proc: # R. J. Mathar, Jun 20 2015
MATHEMATICA
Table[Boole[n <= # <= n+1] & /@ Range[n+1], {n, 0, 15}] // Flatten (* or *)
Table[Floor[(# +2)/(n+2)] & /@ Range[n+1], {n, 0, 15}] // Flatten (* Michael De Vlieger, Jul 21 2016 *)
PROG
(PARI) T(n, k) = if(k==n || k==n-1, 1, 0); \\ G. C. Greubel, Jul 11 2019
(Magma) [k eq n or k eq n-1 select 1 else 0: k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 11 2019
(Sage)
def T(n, k):
if (k==n or k==n-1): return 1
else: return 0
[[T(n, k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Jul 11 2019
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Aug 25 2004
STATUS
approved