|
|
A097807
|
|
Riordan array (1/(1+x),1) read by rows.
|
|
11
|
|
|
1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Columns have g.f. x^k/(1+x). Row sums are A059841. Diagonal sums are (-1)^n*A008619 with g.f. 1/((1+x)(1-x^2)). Inverse of A097806. A097807=B^(-1)*A097805, where B is the binomial matrix.
|
|
LINKS
|
Table of n, a(n) for n=0..80.
|
|
FORMULA
|
Triangle array of numbers T(n, k) with T(n, k)=if(n>=k, (-1)^(n-k), 0).
T(n+1,0) = -T(n,0), T(n+1,k+1) = T(n,k) for k = 1..n. - Reinhard Zumkeller, Sep 17 2014
|
|
EXAMPLE
|
Rows begin
1;
-1,1;
1,-1,1;
-1,1,-1,1;
1,-1,1,-1,1;
|
|
PROG
|
(Haskell)
a097807 n k = a097807_tabl !! n !! k
a097807_row n = a097807_tabl !! n
a097807_tabl = iterate(\xs@(x:_) -> - x : xs) [1]
-- Reinhard Zumkeller, Sep 17 2014
|
|
CROSSREFS
|
Sequence in context: A244513 A020985 A034947 * A014077 A174351 A181432
Adjacent sequences: A097804 A097805 A097806 * A097808 A097809 A097810
|
|
KEYWORD
|
easy,sign,tabl
|
|
AUTHOR
|
Paul Barry, Aug 25 2004
|
|
STATUS
|
approved
|
|
|
|