This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097806 Riordan array (1+x,1) read by rows. 45

%I

%S 1,1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,

%T 1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,

%U 0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1

%N Riordan array (1+x,1) read by rows.

%C Pair sum operator. Columns have g.f. (1+x)x^k. Row sums are A040000. Diagonal sums are (1,1,1,....). Riordan inverse is (1/(1+x), 1). A097806=B*A059260^(-1), where B is the binomial matrix.

%C Triangle T(n,k), 0<=k<=n, read by rows given by [1, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, May 01 2007

%C Table T(n,k) read by antidiagonals. T(n,1) = 1, T(n,2) = 1, T(n,k) = 0, k > 2. - _Boris Putievskiy_, Jan 17 2013

%H Michael De Vlieger, <a href="/A097806/b097806.txt">Table of n, a(n) for n = 0..10010</a> (Rows 0 <= n <= 140)

%H Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012.

%F T(n, k) = if(n=k or n-k=1, 1, 0).

%F a(n) = A103451(n+1). - _Philippe Deléham_, Oct 16 2007

%F From _Boris Putievskiy_, Jan 17 2013: (Start)

%F a(n) = floor((A002260(n)+2)/(A003056(n)+2)), n > 0.

%F a(n) = floor((i+2)/(t+2)), n > 0,

%F where i=n-t*(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). (End)

%F G.f.: (1+x)/(1-x*y). - _R. J. Mathar_, Aug 11 2015

%e Rows begin {1}, {1,1}, {0,1,1}, {0,0,1,1}...

%e From _Boris Putievskiy_, Jan 17 2013: (Start)

%e The start of the sequence as table:

%e 1..1..0..0..0..0..0...

%e 1..1..0..0..0..0..0...

%e 1..1..0..0..0..0..0...

%e 1..1..0..0..0..0..0...

%e 1..1..0..0..0..0..0...

%e 1..1..0..0..0..0..0...

%e 1..1..0..0..0..0..0...

%e . . .

%e The start of the sequence as triangle array read by rows:

%e 1;

%e 1,1;

%e 0,1,1;

%e 0,0,1,1;

%e 0,0,0,1,1;

%e 0,0,0,0,1,1;

%e 0,0,0,0,0,1,1;

%e 0,0,0,0,0,0,1,1;

%e . . .

%e Row number r (r>4) contains (r-2) times '0' and 2 times '1'. (End)

%p A097806 := proc(n,k)

%p if k =n or k=n-1 then

%p 1;

%p else

%p 0;

%p end if;

%p end proc: # _R. J. Mathar_, Jun 20 2015

%t Table[Boole[n <= # <= n + 1] & /@ Range[n + 1], {n, 0, 14}] // Flatten (* or *)

%t Table[Floor[(# + 2)/(n + 2)] & /@ Range[n + 1], {n, 0, 14}] // Flatten (* _Michael De Vlieger_, Jul 21 2016 *)

%K easy,nonn,tabl

%O 0,1

%A _Paul Barry_, Aug 25 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.